/* This file is part of MAUS: http:// micewww.pp.rl.ac.uk:8080/projects/maus * * MAUS is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MAUS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MAUS. If not, see <http:// www.gnu.org/licenses/>. */ /* Author: Chris Rogers */ #include <iostream> #include <iomanip> #include <sstream> #include "gtest/gtest.h" #include "CLHEP/Matrix/Matrix.h" #include "Config/ModuleConverter.hh" #include "Utils/Squeak.hh" #include "Interface/Differentiator.hh" #include "Interface/Interpolator.hh" #include "Maths/Matrix.hh" #include "Maths/PolynomialMap.hh" #include "Maths/Vector.hh" // NOTE: tests PolynomialMap, Differentiator and // PolynomialInterpolator classes. // Three classes that are very closely related anyway... using MAUS::PolynomialMap; using MAUS::Matrix; using MAUS::Vector; class PolynomialMapTest : public ::testing::Test { public: PolynomialMapTest() : polynomial_map_(NULL), cloned_map_(NULL), extracted_coeff_map_(NULL) {} bool verify_mapping(const PolynomialMap* polynomial_map, double point[], double answer[]) { bool testpass = true; Vector<double> valueMV(3, 0); Vector<double> pointMV(2, 0); for (int i = 1; i <= 2; i++) pointMV(i) = point[i-1]; MAUS::Squeak::mout(MAUS::Squeak::debug) << "PolyVectorFTest" << std::endl; polynomial_map->F(pointMV, valueMV); MAUS::Squeak::mout(MAUS::Squeak::debug) << "PolyVectorFTest" << std::endl; for (int i = 0; i < 3; i++) { testpass &= fabs(valueMV(i+1) - answer[i]) < 1e-9; } for (int i = 0; i < 3; i++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << valueMV(i+1) << " "; } MAUS::Squeak::mout(MAUS::Squeak::debug) << "Hep F(*, *) " << testpass << std::endl; std::vector<double> valueVec(3, -2); std::vector<double> pointVec(2, 0); for (int i = 0; i < 2; i++) pointVec[i] = point[i]; polynomial_map->F(&pointVec[0], &valueVec[0]); for (int i = 0; i < 3; i++) { testpass &= fabs(valueVec[i] - answer[i]) < 1e-9; } for (int i = 0; i < 3; i++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << valueVec[i] << " "; } MAUS::Squeak::mout(MAUS::Squeak::debug) << "Vec F(*, *) " << testpass << std::endl; return testpass; } // size of point is 3 static void weight_function(const double * point, double * weight) { int hit_count = 0; for (int index = 0; index < 3; ++index) { if (point[index] == 92.) { ++hit_count; } } if (hit_count == 3) { *weight = 0.0; } else { *weight = 1.0; } } protected: virtual void SetUp() { CLHEP::HepMatrix coeffHep(3, 6); for (size_t i = 0; i < 6; i++) { coeffHep[0][i] = i+1; } for (size_t i = 0; i < 6; i++) { coeffHep[1][i] = i*i; } for (size_t i = 0; i < 6; i++) { coeffHep[2][i] = -static_cast<int>(i)-1; } Matrix<double> coefficient_matrix(coeffHep); polynomial_map_ = new PolynomialMap(2, coefficient_matrix); cloned_map_ = polynomial_map_->Clone(); std::vector<PolynomialMap::PolynomialCoefficient> coeffs = polynomial_map_->GetCoefficientsAsVector(); extracted_coeff_map_ = new PolynomialMap(coeffs); } virtual void TearDown() { delete polynomial_map_; delete cloned_map_; delete extracted_coeff_map_; } PolynomialMap const * polynomial_map_; PolynomialMap const * cloned_map_; PolynomialMap const * extracted_coeff_map_; }; TEST_F(PolynomialMapTest, Constructor) { ASSERT_EQ(polynomial_map_->PointDimension(), (size_t) 2); ASSERT_EQ(polynomial_map_->ValueDimension(), (size_t) 3); ASSERT_EQ(extracted_coeff_map_->PointDimension(), (size_t) 2); ASSERT_EQ(extracted_coeff_map_->ValueDimension(), (size_t) 3); } TEST_F(PolynomialMapTest, Clone) { delete polynomial_map_; polynomial_map_ = NULL; ASSERT_EQ(cloned_map_->PointDimension(), (size_t) 2); ASSERT_EQ(cloned_map_->ValueDimension(), (size_t) 3); } TEST_F(PolynomialMapTest, MapEvaluation) { double point1[2] = {0, 0}; double answer1[3] = {1, 0, -1}; ASSERT_TRUE(verify_mapping(cloned_map_, point1, answer1)); ASSERT_TRUE(verify_mapping(extracted_coeff_map_, point1, answer1)); double point2[2] = {3, -2}; // {1, 3, -2, 9, -6, 4} double answer2[3] = {31, 80, -31}; ASSERT_TRUE(verify_mapping(cloned_map_, point2, answer2)); ASSERT_TRUE(verify_mapping(extracted_coeff_map_, point2, answer2)); for (int i = 0; i < 5; i++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << "nPCoeffs(3, " << i << ") " << PolynomialMap::NumberOfPolynomialCoefficients(3, i) << std::endl; } // FIXME(plane1@iit.edu): No actual test here. Just some debug output. for (int i = 0; i < 20; i++) { std::vector<int> indexP = PolynomialMap::IndexByPower(i, 3); std::vector<int> indexV = PolynomialMap::IndexByVector(i, 3); MAUS::Squeak::mout(MAUS::Squeak::debug) << std::setw(5) << i << " *|* "; for (size_t j = 0; j < indexP.size(); j++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << std::setw(5) << indexP[j] << " "; } MAUS::Squeak::mout(MAUS::Squeak::debug) << " *|* "; for (size_t j = 0; j < indexV.size(); j++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << std::setw(5) << indexV[j] << " "; } MAUS::Squeak::mout(MAUS::Squeak::debug) << std::endl; } } TEST_F(PolynomialMapTest, IterableEquality) { std::vector<int> a; std::vector<int> b; ASSERT_TRUE(PolynomialMap::IterableEquality( a, b, a.begin(), a.end(), b.begin(), b.end())); a.push_back(-2); ASSERT_FALSE(PolynomialMap::IterableEquality( a, b, a.begin(), a.end(), b.begin(), b.end())); b.push_back(-2); ASSERT_TRUE(PolynomialMap::IterableEquality( a, b, a.begin(), a.end(), b.begin(), b.end())); b.push_back(-2); ASSERT_FALSE(PolynomialMap::IterableEquality( a, b, a.begin(), a.end(), b.begin(), b.end())); } TEST_F(PolynomialMapTest, PointBox) { double deltaA[] = {2., 3., 4., 5.}; std::vector<double> delta(deltaA, deltaA+4); std::vector<std::vector<double> > ps = PolynomialMap::PointBox(delta, 6); for (size_t i = 0; i < ps.size(); i++) { bool on_edge = false; for (size_t j = 0; j < ps[i].size(); j++) { // at least one of ps[i] must be == +- delta for it to be on edge on_edge = on_edge || fabs(delta[j]-fabs(ps[i][j])) < 1e-9; } if (!on_edge) { for (size_t j = 0; j < ps[i].size(); j++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << ps[i][j] << " "; } } ASSERT_TRUE(on_edge); } } TEST_F(PolynomialMapTest, GetAvgChi2OfDifference) { double mat_data[] = {1, 2, 7, 13, 5, 0, 4, 3, 11, 3, 7, 9, 1, 2, 7, 13, 8, 2}; Matrix<double> mat(3, 6, mat_data); PolynomialMap pvec(2, mat); std::vector< std::vector<double> > in; std::vector< std::vector<double> > out; std::vector< std::vector<double> > out_neg; // empty in vector bool testpass = true; try { pvec.GetAvgChi2OfDifference(in, out); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); for (int i = 0; i < 10; i++) { in.push_back(std::vector<double>(2, i)); in.back()[1] = i*2; out .push_back(std::vector<double>(3, 0)); out_neg.push_back(std::vector<double>(3, 0)); pvec.F(&in.back()[0], &out.back()[0]); for (int i = 0; i < 3; i++) { out_neg.back()[i] = -out.back()[i]; } } double avg_chi2 = pvec.GetAvgChi2OfDifference(in, out); ASSERT_TRUE(fabs(avg_chi2) < 1e-6); avg_chi2 = pvec.GetAvgChi2OfDifference(in, out_neg); ASSERT_TRUE(fabs(avg_chi2/1e14 - 4.90542) < 1e-3); // Hope that is right // in/out size mismatch in.pop_back(); testpass = true; try { pvec.GetAvgChi2OfDifference(in, out); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // in[i] size != point dimension out.pop_back(); in[0].pop_back(); testpass = true; try { pvec.GetAvgChi2OfDifference(in, out); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // out[i] size != value dimension in.push_back(std::vector<double>(2, 0.0)); in[0].push_back(0.0); out[0].pop_back(); testpass = true; try { pvec.GetAvgChi2OfDifference(in, out); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); } TEST_F(PolynomialMapTest, Means) { std::vector<std::vector<double> > values; values.push_back(std::vector<double>()); for (size_t i = 1; i <= 3; i++) values.back().push_back(i); values.push_back(std::vector<double>()); for (size_t i = 1; i <= 3; i++) { values.back().push_back(-static_cast<double>(i)); } values.push_back(std::vector<double>()); for (size_t i = 1; i <= 3; i++) values.back().push_back(i*i); std::vector<double> weights1(3, 1.); std::vector<double> weights2(3, 1.); weights2[2] = 0.; Vector<double> v1 = PolynomialMap::Means(values, std::vector<double>()); Vector<double> v2 = PolynomialMap::Means(values, weights1); Vector<double> v3 = PolynomialMap::Means(values, weights2); for (size_t i = 1; i <= 3; i++) { EXPECT_TRUE(fabs(v1(i)-static_cast<double>(i*i)/3.) < 1e-6); EXPECT_TRUE(fabs(v2(i)-static_cast<double>(i*i)/3.) < 1e-6); EXPECT_TRUE(fabs(v3(i)) < 1e-6); } } TEST_F(PolynomialMapTest, Covariances) { std::vector<std::vector<double> > values; values.push_back(std::vector<double>()); for (size_t i = 0; i < 3; i++) values.back().push_back(1); values.push_back(std::vector<double>()); for (size_t i = 0; i < 3; i++) values.back().push_back(1); values.push_back(std::vector<double>()); for (size_t i = 0; i < 3; i++) values.back().push_back(-1); values.push_back(std::vector<double>()); for (size_t i = 0; i < 3; i++) values.back().push_back(-1); // empty weights -> PolynomialMap defaults to weights being all 1. std::vector<double> weights0; // empty means -> PolynomialMap defaults to means calculated from values Vector<double> means0; std::vector<double> weights1(4, 1.); Vector<double> means1(3, 0.); std::vector<double> weights2(4, 1.); weights2[0] = 0.; weights2[1] = 0.; Vector<double> means2(3, -1.); Matrix<double> m1 = PolynomialMap::Covariances(values, weights0, means0); Matrix<double> m2 = PolynomialMap::Covariances(values, weights1, means1); Matrix<double> m3 = PolynomialMap::Covariances(values, weights2, means2); EXPECT_TRUE(fabs(determinant(m1-Matrix<double>(3, 3, 1.))) < 1e-6); EXPECT_TRUE(fabs(determinant(m2-Matrix<double>(3, 3, 1.))) < 1e-6); EXPECT_TRUE(fabs(determinant(m3)) < 1e-6); } TEST_F(PolynomialMapTest, LeastSquaresFittingErrorHandling) { // Check that the error matrix term does *something* (anything) and handles // correctly bad input (throws) // Maths is checked in python tests... as it requires high stats MAUS::Squeak::mout(MAUS::Squeak::debug) << "PolynomialLeastSquaresTest" << std::endl; int nX = 4; int nY = 4; int nZ = 4; Matrix<double> mat(3, 4, 0.); mat(1, 1) = 1.; mat(2, 1) = 4.; mat(3, 1) = 1.; mat(1, 2) = 2.; mat(2, 2) = 3.; mat(3, 2) = 2.; mat(1, 3) = 7.; mat(2, 3) = 11.; mat(3, 3) = 7.; mat(1, 4) = 13.; mat(2, 4) = 3.; mat(3, 4) = 13.; VectorMap* weightFunction = NULL; PolynomialMap* vecF = new PolynomialMap(3, mat); std::vector< std::vector<double> > points(nX*nY*nZ, std::vector<double>(3)); std::vector< std::vector<double> > values(nX*nY*nZ, std::vector<double>(3)); std::vector<double> weights(nX*nY*nZ, 1); size_t n_coeffs = vecF->NumberOfPolynomialCoefficients(); Matrix<double> errs1a(n_coeffs, n_coeffs, 0.); Matrix<double> errs1b(n_coeffs, n_coeffs, 1.); for (int i = 0; i < nX; i++) for (int j = 0; j < nY; j++) for (int k = 0; k < nZ; k++) { int a = k+j*nZ + i*nY*nZ; points[a][0] = i/static_cast<double>(nX)*105.; points[a][1] = j/static_cast<double>(nY)*201.; points[a][2] = k/static_cast<double>(nZ)*105.; vecF->F(&points[a][0], &values[a][0]); } delete vecF; // null weightFunction just tests branching to // PolynomialLeastSquaresFit(points, values, 1) bool testpass = true; PolynomialMap* pVec1a = PolynomialMap::PolynomialLeastSquaresFit( points, values, 1, weightFunction, errs1a); PolynomialMap* pVec1b = PolynomialMap::PolynomialLeastSquaresFit( points, values, 1, weightFunction, errs1b); Matrix<double> coeff1a = pVec1a->GetCoefficientsAsMatrix(); Matrix<double> coeff1b = pVec1b->GetCoefficientsAsMatrix(); for (size_t i = 1; i <= coeff1a.number_of_rows(); i++) for (size_t j = 1; j <= coeff1b.number_of_columns(); j++) { if (fabs(coeff1a(i, j) - mat(i, j)) > 1e-6) testpass = false; if (fabs(coeff1b(i, j) - mat(i, j)) < 1e-6) testpass = false; } delete pVec1b; delete pVec1a; EXPECT_TRUE(testpass); Matrix<double> errs2(n_coeffs, n_coeffs-1, 0.); EXPECT_THROW(PolynomialMap::PolynomialLeastSquaresFit( points, values, 1, weightFunction, errs2), MAUS::Exceptions::Exception); Matrix<double> errs3(n_coeffs-1, n_coeffs, 0.); EXPECT_THROW(PolynomialMap::PolynomialLeastSquaresFit( points, values, 1, weightFunction, errs3), MAUS::Exceptions::Exception); } TEST_F(PolynomialMapTest, LeastSquaresFitting) { MAUS::Squeak::mout(MAUS::Squeak::debug) << "PolynomialLeastSquaresTest" << std::endl; int nX = 4; int nY = 4; int nZ = 4; CLHEP::HepMatrix mat(3, 4, 0); mat[0][0] = 1.; mat[1][0] = 4.; mat[2][0] = 1.; mat[0][1] = 2.; mat[1][1] = 3.; mat[2][1] = 2.; mat[0][2] = 7.; mat[1][2] = 11.; mat[2][2] = 7.; mat[0][3] = 13.; mat[1][3] = 3.; mat[2][3] = 13.; VectorMap* weightFunction = NULL; PolynomialMap* vecF = new PolynomialMap(3, Matrix<double>(mat)); std::vector< std::vector<double> > points(nX*nY*nZ, std::vector<double>(3)); std::vector< std::vector<double> > values(nX*nY*nZ, std::vector<double>(3)); std::vector<double> weights(nX*nY*nZ, 1); for (int i = 0; i < nX; i++) for (int j = 0; j < nY; j++) for (int k = 0; k < nZ; k++) { int a = k+j*nZ + i*nY*nZ; points[a][0] = i/static_cast<double>(nX)*105.; points[a][1] = j/static_cast<double>(nY)*201.; points[a][2] = k/static_cast<double>(nZ)*105.; vecF->F(&points[a][0], &values[a][0]); } delete vecF; // null weightFunction just tests branching to // PolynomialLeastSquaresFit(points, values, 1) PolynomialMap* pVec = PolynomialMap::PolynomialLeastSquaresFit( points, values, 1, weightFunction); // polynomial order should be 1 EXPECT_EQ(pVec->PolynomialOrder(), static_cast<size_t>(1)); // with polynomial order 1, the number of poly. coeff. is just the number of // variables plus one for the constant term EXPECT_EQ(pVec->NumberOfPolynomialCoefficients(), static_cast<size_t>(4)); CLHEP::HepMatrix recCoeff = MAUS::CLHEP::HepMatrix(pVec->GetCoefficientsAsMatrix()); bool testpass = true; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Input" << mat << "Output" << recCoeff << std::endl; for (int i = 0; i < recCoeff.num_row(); i++) for (int j = 0; j < recCoeff.num_col(); j++) if (fabs(recCoeff[i][j] - mat[i][j]) > 1e-6) testpass = false; delete pVec; EXPECT_TRUE(testpass); testpass = true; // now add an outlier with 0 weight - try weighted fit points.push_back(std::vector<double>(3, 92.)); values.push_back(std::vector<double>(3, 17.)); weights.push_back(0.); pVec = PolynomialMap::PolynomialLeastSquaresFit(points, values, 1, weights); // polynomial order should be 1 EXPECT_EQ(pVec->PolynomialOrder(), static_cast<size_t>(1)); // with polynomial order 1, the number of poly. coeff. is just the number of // variables plus one for the constant term EXPECT_EQ(pVec->NumberOfPolynomialCoefficients(), static_cast<size_t>(4)); recCoeff = MAUS::CLHEP::HepMatrix(pVec->GetCoefficientsAsMatrix()); MAUS::Squeak::mout(MAUS::Squeak::debug) << "Weighted Input" << mat << "Weighted Output" << recCoeff << std::endl; for (int i = 0; i < recCoeff.num_row(); i++) for (int j = 0; j < recCoeff.num_col(); j++) if (fabs(recCoeff[i][j] - mat[i][j]) > 1e-6) testpass = false; delete pVec; EXPECT_TRUE(testpass); // same test as above but using VectorMap instead of std::vector<double> // for the weights weightFunction = new Function(&weight_function, points.size(), points.size()); testpass = true; pVec = NULL; pVec = PolynomialMap::PolynomialLeastSquaresFit(points, values, 1, weightFunction); // polynomial order should be 1 EXPECT_EQ(pVec->PolynomialOrder(), static_cast<size_t>(1)); // with polynomial order 1, the number of poly. coeff. is just the number of // variables plus one for the constant term EXPECT_EQ(pVec->NumberOfPolynomialCoefficients(), static_cast<size_t>(4)); recCoeff = MAUS::CLHEP::HepMatrix(pVec->GetCoefficientsAsMatrix()); for (int i = 0; i < recCoeff.num_row(); i++) for (int j = 0; j < recCoeff.num_col(); j++) if (fabs(recCoeff[i][j] - mat[i][j]) > 1e-6) testpass = false; if (pVec != NULL) { delete pVec; } delete weightFunction; EXPECT_TRUE(testpass); testpass = true; // now take some of the input values, try for a constrained fit PolynomialMap Constraint(2, Matrix<double>(mat.sub(1, 2, 1, 3))); std::vector<PolynomialMap::PolynomialCoefficient> coeffs = Constraint.GetCoefficientsAsVector(); for (int i = 0; i < 2; i++) coeffs.erase(coeffs.begin()); PolynomialMap* constraintPVec = new PolynomialMap(coeffs); pVec = PolynomialMap::ConstrainedPolynomialLeastSquaresFit( points, values, 1, constraintPVec->GetCoefficientsAsVector(), weights); // polynomial order should be 1 EXPECT_EQ(pVec->PolynomialOrder(), static_cast<size_t>(1)); // with polynomial order 1, the number of poly. coeff. is just the number of // variables plus one for the constant term EXPECT_EQ(pVec->NumberOfPolynomialCoefficients(), static_cast<size_t>(4)); recCoeff = MAUS::CLHEP::HepMatrix(pVec->GetCoefficientsAsMatrix()); MAUS::Squeak::mout(MAUS::Squeak::debug) << "Constrained Input\n" << *constraintPVec << "Constrained Output\n" << *pVec << std::endl; for (int i = 0; i < recCoeff.num_row(); i++) for (int j = 0; j < recCoeff.num_col(); j++) if (fabs(recCoeff[i][j] - mat[i][j]) > 1e-6) testpass = false; delete pVec; EXPECT_TRUE(testpass); // bad points size testpass = true; try { const std::vector< std::vector<double> > bad_points; PolynomialMap::ConstrainedPolynomialLeastSquaresFit( bad_points, values, 1, constraintPVec->GetCoefficientsAsVector(), weights); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // bad values size testpass = true; try { const std::vector< std::vector<double> > bad_values; PolynomialMap::ConstrainedPolynomialLeastSquaresFit( points, bad_values, 1, constraintPVec->GetCoefficientsAsVector(), weights); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); testpass = true; // should return a copy of double mat2[] = {1., 2., 7., 13., 200., 500., 800., 1100., 1400., 1700., 1., 3., 8., 14., 300., 600., 900., 1200., 1500., 1800., 1., 4., 9., 15., 400., 700., 1000., 1300., 1600., 1900.}; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Chi2SweepingLeastSquaresFit" << std::endl; PolynomialMap* testF = new PolynomialMap(3, Matrix<double>(3, 10, mat2)); std::vector<double> delta(3); delta[0] = 1e-50; delta[1] = 1e-50; delta[2] = 1e-50; // check we can make a polynomial vector at all pVec = PolynomialMap::Chi2SweepingLeastSquaresFit( *testF, 5, std::vector< PolynomialMap::PolynomialCoefficient >(), 1e-40, delta, 10., 100); if (pVec == NULL) { testpass = false; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Failed to make PolynomialMap when " << "PolynomialMap expected " << pVec << std::endl; } else { Matrix<double> o1 = pVec ->GetCoefficientsAsMatrix(); Matrix<double> o2 = testF->GetCoefficientsAsMatrix(); testpass &= o1.number_of_rows() == o2.number_of_rows() && o1.number_of_columns() == o2.number_of_columns(); for (size_t i = 1; i <= o2.number_of_rows(); i++) for (size_t j = 1; j <= o2.number_of_columns(); j++) testpass &= fabs(o1(i, j) - o2(i, j)) < 1e-2; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Input should be same as output\nInput\n" << *testF << "Output\n" << *pVec << " testpass " << testpass << std::endl; } if (pVec != NULL) delete pVec; EXPECT_TRUE(testpass); testpass = true; // check we can get a decent fit at lower order to a higher order polynomial delta[0] = 1e-50; delta[1] = 1e-50; delta[2] = 1e-50; pVec = PolynomialMap::Chi2SweepingLeastSquaresFit( *testF, 1, std::vector< PolynomialMap::PolynomialCoefficient >(), 1e-40, delta, 10., 100); if (pVec == NULL) { testpass = false; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Failed to make PolynomialMap when " << "PolynomialMap expected " << pVec << std::endl; } else { // polynomial order should be 1 EXPECT_EQ(pVec->PolynomialOrder(), static_cast<size_t>(1)); // with polynomial order 1, the number of poly. coeff. is just the number of // variables plus one for the constant term EXPECT_EQ(pVec->NumberOfPolynomialCoefficients(), static_cast<size_t>(4)); Matrix<double> o1 = pVec ->GetCoefficientsAsMatrix(); Matrix<double> o2 = testF->GetCoefficientsAsMatrix(); testpass &= o1.number_of_rows() == o2.number_of_rows() && o1.number_of_columns() == 4; for (size_t i = 1; i <= o1.number_of_rows(); i++) for (size_t j = 1; j <= o1.number_of_columns(); j++) testpass &= fabs(o1(i, j) - o2(i, j)) < 1e-6; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Input should be same as output\nInput\n" << *testF << "Output\n" << *pVec << " testpass " << testpass << std::endl; } EXPECT_TRUE(testpass); testpass = true; // test that I return NULL if I can't converge; for these parameters // floating point precision should mean that I don't converge. delta[0] = 1e6; delta[1] = 1e6; delta[2] = 1e6; pVec = PolynomialMap::Chi2SweepingLeastSquaresFit( *testF, 5, std::vector< PolynomialMap::PolynomialCoefficient >(), 1e-60, delta, 10., 100); if (pVec != NULL) testpass = false; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Should be NULL " << pVec << " testpass " << testpass << std::endl; EXPECT_TRUE(testpass); testpass = true; // the point of mat3 is that it introduces an effective unit into each // dimension; so x_0 has units like 1., x_1 has units like 1e6 and x_2 has // units like 1e3 validity region (delta at output) should reflect the units double deltaMaxA[] = {1e12, 1e12, 1e12, 1e12}; std::vector<double> deltaMax(deltaMaxA, deltaMaxA+3); double mat3[] = { 1., 2., 7., 13.e3, 200., 500.e6, 800.e3, 1100.e12, 1400.e9, 1700.e6, 1., 3., 8.e6, 14.e3, 300., 600.e6, 900.e3, 1200.e12, 1500.e9, 1800.e6, 1., 4., 9.e6, 15.e3, 400., 700.e6, 1000.e3, 1300.e12, 1600.e9, 1900.e6}; PolynomialMap* testF2 = new PolynomialMap(3, Matrix<double>(3, 10, mat3)); MAUS::Squeak::mout(MAUS::Squeak::debug) << "Chi2SweepingLeastSquaresFitVariableWalls" << std::endl; // delta.push_back(0.); delta[0] = 1e-50; delta[1] = 1e-50; delta[2] = 1e-50; pVec = PolynomialMap::Chi2SweepingLeastSquaresFitVariableWalls( *testF2, 2, std::vector< PolynomialMap::PolynomialCoefficient >(), 1e-20, delta, 10., 100, deltaMax); // polynomial order should be 2 EXPECT_EQ(pVec->PolynomialOrder(), static_cast<size_t>(2)); // with point size 3 and polynomial order 2, // the number of poly. coeff. is (3+2)!/(3!2!) = 10 EXPECT_EQ(pVec->NumberOfPolynomialCoefficients(), static_cast<size_t>(10)); MAUS::Squeak::mout(MAUS::Squeak::debug) << "delta variable walls: "; for (size_t i = 0; i < delta.size(); i++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << delta[i] << " "; } MAUS::Squeak::mout(MAUS::Squeak::debug) << std::endl; delta[0] = 1e-50; delta[1] = 1e-50; delta[2] = 1e-50; PolynomialMap* pVec2 = PolynomialMap::Chi2SweepingLeastSquaresFit( *testF2, 2, std::vector< PolynomialMap::PolynomialCoefficient >(), 1e-20, delta, 10., 100); MAUS::Squeak::mout(MAUS::Squeak::debug) << "delta fixed walls: "; for (size_t i = 0; i < delta.size(); i++) { MAUS::Squeak::mout(MAUS::Squeak::debug) << delta[i] << " "; } MAUS::Squeak::mout(MAUS::Squeak::debug) << std::endl; if (pVec == NULL) { MAUS::Squeak::mout(MAUS::Squeak::debug) << "Error - " << "Chi2SweepingLeastSquaresFitVariableWalls " << "returns " << pVec << std::endl; testpass = false; } else { // polynomial order should be 2 EXPECT_EQ(pVec2->PolynomialOrder(), static_cast<size_t>(2)); // with point size 3 and polynomial order 2, // the number of poly. coeff. is (3+2)!/(3!2!) = 10 EXPECT_EQ(pVec2->NumberOfPolynomialCoefficients(), static_cast<size_t>(10)); MAUS::Squeak::mout(MAUS::Squeak::debug) << "Input should be same as output\nInput\n" << *testF2 << "Output\n" << *pVec << "For comparison, using normal algorithm\n" << *pVec2 << std::endl; Matrix<double> o1 = pVec ->GetCoefficientsAsMatrix(); Matrix<double> o2 = testF2->GetCoefficientsAsMatrix(); testpass &= o1.number_of_rows() == o2.number_of_rows() && o1.number_of_columns() == o2.number_of_columns(); for (size_t i = 1; i <= o1.number_of_rows() && i <= o2.number_of_rows(); i++) { for (size_t j = 1; j <= o1.number_of_columns() && j <= o2.number_of_columns(); j++) { testpass &= fabs(o1(i, j) - o2(i, j))/fabs(o1(i, j) + o2(i, j)) < 1.e-3 || fabs(o1(i, j) + o2(i, j)) < 1e-9; } } } if (pVec != NULL) delete pVec; MAUS::Squeak::mout(MAUS::Squeak::debug) << "testpass " << testpass << std::endl; EXPECT_TRUE(testpass); testpass = true; // test that I return NULL if I can't converge; for these parameters floating // point precision should mean that I don't converge. delta[0] = 1e6; delta[1] = 1e6; delta[2] = 1e6; pVec = PolynomialMap::Chi2SweepingLeastSquaresFitVariableWalls( *testF2, 5, std::vector< PolynomialMap::PolynomialCoefficient >(), 1e-60, delta, 10., 100, deltaMax); if (pVec != NULL) testpass = false; MAUS::Squeak::mout(MAUS::Squeak::debug) << "Should be NULL " << pVec << std::endl; delete testF; MAUS::Squeak::mout(MAUS::Squeak::debug) << "PolynomialLeastSquaresTest " << *testF2 << testpass << std::endl; EXPECT_TRUE(testpass); } TEST_F(PolynomialMapTest, SpaceTransform) { int myints[] = {1, 2}; std::vector<int> inVariablesByVector( myints, myints + sizeof(myints) / sizeof(int)); PolynomialMap::PolynomialCoefficient coefficient = PolynomialMap::PolynomialCoefficient(inVariablesByVector, 0, 1.1); int space_in_array[] = {0, 2, 3, 5, 6}; std::vector<int> space_in( space_in_array, space_in_array + sizeof(space_in_array) / sizeof(int)); int space_out_array[] = {4, 7, 1, 2, 3, 0}; std::vector<int> space_out( space_out_array, space_out_array + sizeof(space_out_array) / sizeof(int)); coefficient.SpaceTransform(space_in, space_out); std::vector<int> transformedInVariables = coefficient.InVariables(); EXPECT_EQ(3, transformedInVariables[0]); EXPECT_EQ(4, transformedInVariables[1]); EXPECT_EQ(5, coefficient.OutVariable()); EXPECT_EQ(1.1, coefficient.Coefficient()); // in variable not in space mapping bool testpass = true; try { coefficient.SpaceTransform(space_in, space_out); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // out variable not in space mapping space_in[3] = 7; space_in[4] = 1; testpass = true; try { coefficient.SpaceTransform(space_in, space_out); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); } /* TEST_F(PolynomialMapTest, MakePolynomialVector) { const double point_data[2] = {1.0, 2.0}; Vector<double> point(point_data, 2); Vector<double> polynomial_vector; test.polynomial_map_->MakePolynomialVector(point, polynomial_vector); for (size_t index = 0; index < 2; ++index) { EXPECT_NEAR(point[index], point_data[index], 1.e-6); } } */ TEST_F(PolynomialMapTest, SetCoefficients) { Matrix<double> coefficient_matrix(3, 6, 0.); // initialize all elements to zero PolynomialMap test_map(2, coefficient_matrix); const double coefficients[18] = { 1., 2., 3., 4., 5., 6., 0., 1., 4., 9., 16., 25., -1., -2., -3., -4., -5., -6., }; coefficient_matrix = Matrix<double>(3, 6, coefficients); test_map.SetCoefficients(coefficient_matrix); const Matrix<double> test_coefficient_matrix = test_map.GetCoefficientsAsMatrix(); const Matrix<double> master_coefficient_matrix = polynomial_map_->GetCoefficientsAsMatrix(); for (size_t row = 0; row < 3; ++row) { for (size_t column = 0; column < 6; ++column) { EXPECT_NEAR(test_coefficient_matrix(row+1, column+1), master_coefficient_matrix(row+1, column+1), 1.e-6); } } } TEST_F(PolynomialMapTest, UnmakePolynomialVector) { const double point_data[2] = {1.0, 2.0}; Vector<double> point(point_data, 2); Vector<double> polynomial_vector; polynomial_map_->MakePolynomialVector(point, polynomial_vector); polynomial_map_->UnmakePolynomialVector(polynomial_vector, point); for (size_t index = 0; index < 2; ++index) { EXPECT_NEAR(point[index], point_data[index], 1.e-6); } Vector<double> empty_point; polynomial_map_->UnmakePolynomialVector(polynomial_vector, empty_point); for (size_t index = 0; index < 2; ++index) { EXPECT_NEAR(empty_point[index], point_data[index], 1.e-6); } Vector<double> wrong_size_point(4); bool testpass = true; try { polynomial_map_->UnmakePolynomialVector(polynomial_vector, wrong_size_point); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); double polynomial_vector_data[polynomial_vector.size()]; polynomial_map_->MakePolynomialVector(point_data, polynomial_vector_data); double point_test[2]; polynomial_map_->UnmakePolynomialVector(polynomial_vector_data, point_test); for (size_t index = 0; index < 2; ++index) { EXPECT_NEAR(point_test[index], point_data[index], 1.e-6); } } TEST_F(PolynomialMapTest, generate_polynomial_2) { const double y0[3] = {1., 0., -1.}; const double y1[3] = {7., 10., -7.}; for (size_t value_var_index = 0; value_var_index < 3; ++value_var_index) { Vector<double> polynomial = generate_polynomial_2D(*polynomial_map_, 0, // point var index value_var_index, 0., // point var min 1., // point var max 1.); // point var delta const double y[2] = {y0[value_var_index], y1[value_var_index]}; for (size_t index = 0; index < 2; ++index) { EXPECT_NEAR(y[index], polynomial[index], 1.e-6); } } } TEST_F(PolynomialMapTest, RecentredNotSupported) { bool testpass = true; try { double * point = NULL; polynomial_map_->Recentred(point); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); } TEST_F(PolynomialMapTest, InverseNotSupported) { bool testpass = true; try { polynomial_map_->Inverse(); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); }