// @(#)root/mathcore:$Id$ // Author: L. Moneta Wed Aug 30 11:05:34 2006 /********************************************************************** * * * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT * * * * * **********************************************************************/ // Header file for class FitResult #ifndef ROOT_Fit_FitResult #define ROOT_Fit_FitResult #ifndef ROOT_Fit_IFunctionfwd #include "Math/IFunctionfwd.h" #endif #ifndef ROOT_Fit_IParamFunctionfwd #include "Math/IParamFunctionfwd.h" #endif #include #include #include #include #include namespace ROOT { namespace Math { class Minimizer; } namespace Fit { class FitConfig; class BinData; //___________________________________________________________________________________ /** class containg the result of the fit and all the related information (fitted parameter values, error, covariance matrix and minimizer result information) Contains a pointer also to the fitted (model) function, modified with the fit parameter values. When the fit is valid, it is constructed from a Minimizer and a model function pointer @ingroup FitMain */ class FitResult { public: typedef ROOT::Math::IParamMultiFunction IModelFunction; /** Default constructor for an empty (non valid) fit result */ FitResult (); /** Constructor from a fit-config for a dummy fit (e.g. when only one fcn evaluation is done) */ FitResult (const FitConfig & fconfig); /** Construct from a Minimizer instance after fitting Run also Minos if requested from the configuration */ FitResult(ROOT::Math::Minimizer & min, const FitConfig & fconfig, const IModelFunction * f, bool isValid, unsigned int sizeOfData = 0, bool binFit = true, const ROOT::Math::IMultiGenFunction * chi2func = 0, unsigned int ncalls = 0); /** Copy constructor. */ FitResult(const FitResult &); /** Assignment operator */ FitResult & operator = (const FitResult & rhs); /** Destructor */ virtual ~FitResult (); public: /** Update the fit result with a new minimization status To be run only if same fit is performed with same configuration Note that in this case MINOS is not re-run. If one wants to run also MINOS a new result must be created */ bool Update(const ROOT::Math::Minimizer & min, bool isValid, unsigned int ncalls = 0 ); /** minimization quantities **/ /// minimizer type const std::string & MinimizerType() const { return fMinimType; } /** True if fit successful, otherwise false. A fit is considered successful if the minimizer succeded in finding the minimum. It could happen that subsequent operations like error analysis (e.g. Minos) failed. In that case the status can be still true if the original minimization algorithm succeeded in finding the minimum. One can query in that case the minimizer return status using Status(). It is responability to the Minimizer class to tag a found minimum as valid or not and to produce also a status code. */ bool IsValid() const { return fValid; } /// True if a fit result does not exist (even invalid) with parameter values bool IsEmpty() const { return (fParams.size() == 0); } /// Return value of the objective function (chi2 or likelihood) used in the fit double MinFcnValue() const { return fVal; } ///Number of function calls to find minimum unsigned int NCalls() const { return fNCalls; } ///Expected distance from minimum double Edm() const { return fEdm; } /// get total number of parameters unsigned int NTotalParameters() const { return fParams.size(); } /// total number of parameters (abbreviation) unsigned int NPar() const { return NTotalParameters(); } /// get total number of free parameters unsigned int NFreeParameters() const { return fNFree; } /// minimizer status code int Status() const { return fStatus; } ///covariance matrix status code /// using Minuit convention : =0 not calculated, =1 approximated, =2 made pos def , =3 accurate int CovMatrixStatus() const { return fCovStatus; } /** fitting quantities **/ /// Return pointer to model (fit) function with fitted parameter values. const IModelFunction * FittedFunction() const { return fFitFunc; } /// Chi2 fit value /// in case of likelihood must be computed ? double Chi2() const { return fChi2; } /// Number of degree of freedom unsigned int Ndf() const { return fNdf; } /// p value of the fit (chi2 probability) double Prob() const; /// parameter errors (return st::vector) const std::vector & Errors() const { return fErrors; } /// parameter errors (return const pointer) const double * GetErrors() const { return (fErrors.empty()) ? 0 : &fErrors.front(); } /// parameter values (return std::vector) const std::vector & Parameters() const { return fParams; } /// parameter values (return const pointer) const double * GetParams() const { return &fParams.front(); } /// parameter value by index double Value(unsigned int i) const { return fParams[i]; } /// parameter value by index double Parameter(unsigned int i) const { return fParams[i]; } /// parameter error by index // (NOTE: this due to conflict with TObject::Error cannot used in derived class which // inherits from TObject. Use instead ParError (or Errors()[i] ) double Error(unsigned int i) const { return (i < fErrors.size() ) ? fErrors[i] : 0; } /// parameter error by index double ParError(unsigned int i) const { return (i < fErrors.size() ) ? fErrors[i] : 0; } /// name of the parameter std::string ParName(unsigned int i) const; /// set the Minos errors for parameter i (called by the Fitter class when running Minos) void SetMinosError(unsigned int i, double elow, double eup); /// query if parameter i has the Minos error bool HasMinosError(unsigned int i) const; /// lower Minos error. If Minos has not run for parameter i return the parabolic error double LowerError(unsigned int i) const; /// upper Minos error. If Minos has not run for parameter i return the parabolic error double UpperError(unsigned int i) const; /// parameter global correlation coefficient double GlobalCC(unsigned int i) const { return (i < fGlobalCC.size() ) ? fGlobalCC[i] : -1; } /// retrieve covariance matrix element double CovMatrix (unsigned int i, unsigned int j) const { if ( i >= fErrors.size() || j >= fErrors.size() ) return 0; if (fCovMatrix.size() == 0) return 0; // no matrix is available in case of non-valid fits if ( j < i ) return fCovMatrix[j + i* (i+1) / 2]; else return fCovMatrix[i + j* (j+1) / 2]; } /// retrieve correlation elements double Correlation(unsigned int i, unsigned int j ) const { if ( i >= fErrors.size() || j >= fErrors.size() ) return 0; if (fCovMatrix.size() == 0) return 0; // no matrix is available in case of non-valid fits double tmp = CovMatrix(i,i)*CovMatrix(j,j); return ( tmp > 0) ? CovMatrix(i,j)/ std::sqrt(tmp) : 0; } /// fill covariance matrix elements using a generic matrix class implementing operator(i,j) /// the matrix must be previously allocates with right size (npar * npar) template void GetCovarianceMatrix(Matrix & mat) const { unsigned int npar = fErrors.size(); if (fCovMatrix.size() != npar*(npar+1)/2 ) return; // do nothing for (unsigned int i = 0; i< npar; ++i) { for (unsigned int j = 0; j<=i; ++j) { mat(i,j) = fCovMatrix[j + i*(i+1)/2 ]; if (i != j) mat(j,i) = mat(i,j); } } } /// fill a correlation matrix elements using a generic symmetric matrix class implementing operator(i,j) /// the matrix must be previously allocates with right size (npar * npar) template void GetCorrelationMatrix(Matrix & mat) const { unsigned int npar = fErrors.size(); if (fCovMatrix.size() != npar*(npar+1)/2) return; // do nothing for (unsigned int i = 0; i< npar; ++i) { for (unsigned int j = 0; j<=i; ++j) { double tmp = fCovMatrix[i * (i +3)/2 ] * fCovMatrix[ j * (j+3)/2 ]; mat(i,j) = (tmp > 0) ? fCovMatrix[j + i*(i+1)/2 ] / std::sqrt(tmp) : 0; if (i != j) mat(j,i) = mat(i,j); } } } /** get confidence intervals for an array of n points x. stride1 indicates the stride in the coordinate space while stride2 the stride in dimension space. For 1-dim points : stride1=1, stride2=1 for multi-dim points arranged as (x0,x1,...,xN,y0,....yN) stride1=1 stride2=n for multi-dim points arraged as (x0,y0,..,x1,y1,...,xN,yN,..) stride1=ndim, stride2=1 the confidence interval are returned in the array ci cl is the desired confidedence interval value norm is a flag to control if the intervals need to be normalized to the chi2/ndf value By default the intervals are corrected using the chi2/ndf value of the fit if a chi2 fit is performed */ void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double * x, double * ci, double cl=0.95, bool norm = true ) const; /** evaluate confidence interval for the point specified in the passed data sets the confidence interval are returned in the array ci cl is the desired confidence interval value */ void GetConfidenceIntervals(const BinData & data, double * ci, double cl=0.95, bool norm = true ) const; /// get index for parameter name (return -1 if not found) int Index(const std::string & name) const; ///normalize errors using chi2/ndf for chi2 fits void NormalizeErrors(); /// flag to chek if errors are normalized bool NormalizedErrors() const { return fNormalized; } /// print the result and optionaly covariance matrix and correlations void Print(std::ostream & os, bool covmat = false) const; ///print error matrix and correlations void PrintCovMatrix(std::ostream & os) const; /// query if a parameter is bound bool IsParameterBound(unsigned int ipar) const; /// query if a parameter is fixed bool IsParameterFixed(unsigned int ipar) const; /// retrieve parameter bounds - return false if parameter is not bound bool ParameterBounds(unsigned int ipar, double &lower, double &upper) const; /// get name of parameter (deprecated) std::string GetParameterName(unsigned int ipar) const { return ParName(ipar); } protected: /// Return pointer non const pointer to model (fit) function with fitted parameter values. /// used by Fitter class IModelFunction * ModelFunction() { return fFitFunc; } void SetModelFunction(IModelFunction * func) { fFitFunc = func; } friend class Fitter; bool fValid; // flag for indicating valid fit bool fNormalized; // flag for indicating is errors are normalized unsigned int fNFree; // number of fit free parameters (total parameters are in size of parameter vector) unsigned int fNdf; // number of degree of freedom unsigned int fNCalls; // number of function calls int fStatus; // minimizer status code int fCovStatus; // covariance matrix status code double fVal; // minimum function value double fEdm; // expected distance from mimimum double fChi2; // fit chi2 value (different than fval in case of chi2 fits) IModelFunction * fFitFunc; //! model function resulting from the fit. It is given by Fitter but it is managed by FitResult std::map fFixedParams; // list of fixed parameters std::map fBoundParams; // list of limited parameters std::vector > fParamBounds; // parameter bounds std::vector fParams; // parameter values. Size is total number of parameters std::vector fErrors; // errors std::vector fCovMatrix; // covariance matrix (size is npar*(npar+1)/2) where npar is total parameters std::vector fGlobalCC; // global Correlation coefficient std::map > fMinosErrors; // map contains the two Minos errors std::string fMinimType; // string indicating type of minimizer std::vector fParNames; // parameter names (only with FCN only fits, when fFitFunc=0) }; } // end namespace Fit } // end namespace ROOT #endif /* ROOT_Fit_FitResult */