// @(#)root/quadp:$Id$ // Author: Eddy Offermann May 2004 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /************************************************************************* * Parts of this file are copied from the OOQP distribution and * * are subject to the following license: * * * * COPYRIGHT 2001 UNIVERSITY OF CHICAGO * * * * The copyright holder hereby grants you royalty-free rights to use, * * reproduce, prepare derivative works, and to redistribute this software* * to others, provided that any changes are clearly documented. This * * software was authored by: * * * * E. MICHAEL GERTZ gertz@mcs.anl.gov * * Mathematics and Computer Science Division * * Argonne National Laboratory * * 9700 S. Cass Avenue * * Argonne, IL 60439-4844 * * * * STEPHEN J. WRIGHT swright@cs.wisc.edu * * Computer Sciences Department * * University of Wisconsin * * 1210 West Dayton Street * * Madison, WI 53706 FAX: (608)262-9777 * * * * Any questions or comments may be directed to one of the authors. * * * * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF * * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND * * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT * * WITH THE DEPARTMENT OF ENERGY. * *************************************************************************/ #ifndef ROOT_TQpProbBase #define ROOT_TQpProbBase #ifndef ROOT_TError #include "TError.h" #endif #ifndef ROOT_TQpVar #include "TQpVar.h" #endif #ifndef ROOT_TQpDataBase #include "TQpDataBase.h" #endif #ifndef ROOT_TQpLinSolverBase #include "TQpLinSolverBase.h" #endif #ifndef ROOT_TQpResidual #include "TQpResidual.h" #endif #ifndef ROOT_TMatrixD #include "TMatrixD.h" #endif /////////////////////////////////////////////////////////////////////////// // // // default general problem formulation: // // // // minimize c' x + ( 1/2 ) x' * Q x ; // // subject to A x = b ; // // clo <= C x <= cup ; // // xlo <= x <= xup ; // // // // The general linear equality constraints must have either an upper // // or lower bound, but need not have both bounds. The variables may have// // no bounds; an upper bound; a lower bound or both an upper and lower // // bound. // // // // However, for many (possibly most) QP's, the matrices in the // // formulation have structure that may be exploited to solve the // // problem more efficiently. This abstract problem formulation contains // // a setup such that one can derive and add special formulations . // // The optimality conditions of the simple QP defined above are // // follows: // // // // rQ = c + Q * x - A' * y - C' * z = 0 // // rA = A * x - b = 0 // // rC = C * x - s - d = 0 // // r3 = S * z = 0 // // s, z >= 0 // // // // Where rQ, rA, rC and r3 newly defined quantities known as residual // // vectors and x, y, z and s are variables of used in solution of the // // QPs. // // // /////////////////////////////////////////////////////////////////////////// class TQpLinSolverBase; class TQpProbBase : public TObject { public: Int_t fNx; // number of elements in x Int_t fMy; // number of rows in A and b Int_t fMz; // number of rows in C TQpProbBase(); TQpProbBase(Int_t nx,Int_t my,Int_t mz); TQpProbBase(const TQpProbBase &another); virtual ~TQpProbBase() {} virtual TQpDataBase *MakeData (TVectorD &c, TMatrixDBase &Q_in, TVectorD &xlo, TVectorD &ixlo, TVectorD &xup, TVectorD &ixup, TMatrixDBase &A_in,TVectorD &bA, TMatrixDBase &C_in, TVectorD &clo, TVectorD &iclo, TVectorD &cup, TVectorD &icup) = 0; virtual TQpResidual *MakeResiduals(const TQpDataBase *data) = 0; virtual TQpVar *MakeVariables(const TQpDataBase *data) = 0; virtual TQpLinSolverBase *MakeLinSys (const TQpDataBase *data) = 0; virtual void JoinRHS (TVectorD &rhs_in,TVectorD &rhs1_in,TVectorD &rhs2_in,TVectorD &rhs3_in) = 0; virtual void SeparateVars(TVectorD &x_in,TVectorD &y_in,TVectorD &z_in,TVectorD &vars_in) = 0; TQpProbBase &operator= (const TQpProbBase &source); ClassDef(TQpProbBase,1) // Qp problem formulation base class }; #endif