// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // INCL++ intra-nuclear cascade model // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics // Davide Mancusi, CEA // Alain Boudard, CEA // Sylvie Leray, CEA // Joseph Cugnon, University of Liege // #define INCLXX_IN_GEANT4_MODE 1 #include "globals.hh" /** \file G4INCLICoulomb.hh * \brief Abstract interface for Coulomb distortion. * * \date 14 February 2011 * \author Davide Mancusi */ #ifndef G4INCLICOULOMB_HH_ #define G4INCLICOULOMB_HH_ #include "G4INCLParticle.hh" #include "G4INCLParticleEntryAvatar.hh" #include "G4INCLNucleus.hh" namespace G4INCL { class ICoulomb { public: ICoulomb() {} virtual ~ICoulomb() {} /** \brief Modify the momentum of an incoming particle and position it on * the surface of the nucleus. * * This method places Particle p on the surface of Nucleus n and modifies * the direction of its momentum to be tangent to the Coulomb trajectory in * that point. * * The input particle has to be prepared with its asymptotic momentum. Its * position is used only for the purpose of computing the asymptotic impact * parameter; in other words, this method only uses the components of the * position that are perpendicular to the momentum. The remaining component * is not used, and can be set to any value. * * This method returns a ParticleEntry avatar for the projectile. * * \param p incoming particle * \param n distorting nucleus * \return the ParticleEntryAvatar for the projectile particle **/ virtual ParticleEntryAvatar *bringToSurface(Particle * const p, Nucleus * const n) const = 0; /** \brief Modify the momentum of an incoming cluster and position it on * the surface of the target. * * Same as the Particle-based bringToSurface method, but for incoming heavy * ions. * * This method returns a list of ParticleEntry avatars for the * participant nucleons * * \param c incoming heavy ion * \param n distorting nucleus * \return a list of ParticleEntryAvatars **/ virtual IAvatarList bringToSurface(Cluster * const c, Nucleus * const n) const = 0; /** \brief Modify the momenta of the outgoing particles. **/ virtual void distortOut(ParticleList const &pL, Nucleus const * const n) const = 0; /** \brief Return the maximum impact parameter for Coulomb-distorted * trajectories. **/ virtual G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const * const n) const = 0; }; } #endif /* G4INCLICOULOMB_HH_ */