// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id$ // // ---------------- G4QCaptureAtRest header ---------------- // by Mikhail Kossov, December 2003. // Header of G4QCaptureAtRest class of the CHIPS Simulation Branch in GEANT4 // ------------------------------------------------------------------------------- // At present (May 2009) only pi-, K- and antiNucleon capture are tested, which // are the most crucial for the in matter simulation. The hyperon capture (Sigma-, // Xi-, Omega-, antiSigma+) is implemented, but not tested and it is not clear how // frequently this kind of interaction takes place in the simulation of the hadronic // showers. The antiNeutron Capture At Rest is implemented by this G4QCaptureAtRest // class, but it is not clear how the anti-neutrons are stopped in Geant4 tracking. // It can be stopped only by interactions with electrons, as the annihilation cross // section is huge and any interaction with nucleus results in annihilation. The // mu- & tau- Capture At Rest (mu-,nu) & (mu-,nu) are weak processes, which must // be simulated together with the reversed Betha decay (e-,nu). While mu- capture is // similar to the pi- capture from the nuclear fragmentation point of view (the energy // scale is shrinked because m_mu < m_pi and a part of the energy is lost because of // the neutrino radiation), the time scale of the mu- capture process is not exact, // but it is clear, that it is well delayed. By this reason the mu- capture can be // excluded from the G4QCaptureAtRest and can be implemented in the "LongLivingDecay" // branch of simulation, which includes excited states of nuclei and short living // isotopes. On the "Fast Simulation" Level all radioactive isotopes, long living // nuclear excitations, mu-atoms etc, which can be important for the background // signals, must be collected in the continuous database and simulated separately. // CHIPS is SU(3) event generator, so it does not include reactions with the heavy // (c,b,t) quarks involved such as antiDs-, which can be simulated only by SU(6) // QUIPS (QUark Invariant Phase Space) model. - May 2009, M.Kossov.- // ------------------------------------------------------------------------------- // All algorithms are similar: the captured particle is absorbed by a nuclear cluster // with the subsequent Quark Exchange nuclear fragmentation. The Anti-Proton (antiSigma+) // Capture algorithm is more complicated: the anti-baryon annihilates with the quasyfree // nucleons on the nuclear periphery. The peripheral interaction results in a number // of mesons. A part of them misses the nucleus and comes directly to the output, // while others create Multy Quasmon Excitation in the nucleus with the subsequent // Quark Excange Fragmentation of the nucleus. At present the two step mechanism of // the antiProton-Nucleus interaction is hardwired in the G4QEnvironment class, but // with time the first step of the interaction can be moved to this G4QCaptureAtRest // class, to make the G4QEnvirement class simpler and better defined. This is // necessary because the G4QEnvironment class is going to loos the previlage of // the CHIPS Head Class (as previously the G4Quasmon class lost it) and G4QCollision // class is going to be the CHIPS Head Class, where a few Nuclear Environments can // exist (e.g. the Nuclear Environment of the Projectile Nucleus and the Nuclear // Environment of the Target Nucleus). By the way, the antiProton-H1 interaction At // Rest (CHIPSI) can be still simulated with only the G4Quasmon class, as this // reaction does not have any nuclear environment.- May 2009, Mikhail Kossov.- // -------------------------------------------------------------------------------- // **************************************************************************************** // This Header is a part of the CHIPS physics package (author: M. Kosov) // **************************************************************************************** // Short Description: This is a universal process for nuclear capture // (including annihilation) of all negative particles (cold neutrons, negative // hadrons, negative leptons: mu- & tau-). It can be used for the cold neutron // capture, but somebody should decide what is the probability (defined // by the capture cross-section and atomic material properties) to switch // the cold neutron to the at-rest neutron. - M.K. 2009. // ---------------------------------------------------------------------- #ifndef G4QCaptureAtRest_hh #define G4QCaptureAtRest_hh // GEANT4 Headers #include "globals.hh" #include "G4ios.hh" #include "G4VRestProcess.hh" #include "G4ParticleTypes.hh" #include "G4VParticleChange.hh" #include "G4ParticleDefinition.hh" #include "G4DynamicParticle.hh" #include "Randomize.hh" #include "G4ThreeVector.hh" #include "G4LorentzVector.hh" #include "G4RandomDirection.hh" // CHIPS Headers #include "G4QEnvironment.hh" #include "G4QIsotope.hh" #include "G4QPDGToG4Particle.hh" class G4QCaptureAtRest : public G4VRestProcess { private: // Hide assignment operator as private G4QCaptureAtRest& operator=(const G4QCaptureAtRest &right); // Copy constructor G4QCaptureAtRest(const G4QCaptureAtRest& ); public: // Constructor G4QCaptureAtRest(const G4String& processName ="CHIPSNuclearCaptureAtRest"); // Destructor virtual ~G4QCaptureAtRest(); virtual G4bool IsApplicable(const G4ParticleDefinition& particle); G4VParticleChange* AtRestDoIt(const G4Track& aTrack, const G4Step& aStep); G4LorentzVector GetEnegryMomentumConservation(); G4int GetNumberOfNeutronsInTarget(); // Static functions static void SetManual(); static void SetStandard(); static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3, G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1., G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false, G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.); protected: // zero mean lifetime G4double GetMeanLifeTime(const G4Track& aTrack, G4ForceCondition* ); G4double RandomizeDecayElectron(G4int Z); // Randomize energy of decay electron (in MeV) private: G4bool RandomizeMuDecayOrCapture(G4int Z, G4int N); // true=MuCapture, false=MuDecay void CalculateEnergyDepositionOfMuCapture(G4int Z); // (2p->1s, MeV) @@ Now N-independent G4bool RandomizeTauDecayOrCapture(G4int Z, G4int N);// true=TauCapture, false=TauDecay void CalculateEnergyDepositionOfTauCapture(G4int Z);// (2p->1s, MeV) @@N-independ,Improve // BODY private: // Static Parameters static G4bool manualFlag; // If false then standard parameters are used static G4int nPartCWorld; // The#of particles for hadronization (limit of A of fragm.) // -> Parameters of the G4Quasmon class: static G4double Temperature; // Quasmon Temperature static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon static G4double EtaEtaprime; // Part of eta-prime in all etas // -> Parameters of the G4QNucleus class: static G4double freeNuc; // probability of the quasi-free baryon on surface static G4double freeDib; // probability of the quasi-free dibaryon on surface static G4double clustProb; // clusterization probability in dense region static G4double mediRatio; // relative vacuum hadronization probability // -> Parameters of the G4QEnvironment class: static G4bool EnergyFlux; // Flag for Energy Flux use instead of Multy Quasmon static G4double SolidAngle; // Part of Solid Angle to capture secondaries(@@A-dep) static G4double PiPrThresh; // Pion Production Threshold for gammas static G4double M2ShiftVir; // Shift for M2=-Q2=m_pi^2 of the virtual gamma static G4double DiNuclMass; // Double Nucleon Mass for virtual normalization // // Working parameters G4LorentzVector EnMomConservation; // Residual of Energy/Momentum Cons. G4int nOfNeutrons; // #of neutrons in the target nucleus // Modifires for the reaction G4double Time; // Time shift of the capture reaction G4double EnergyDeposition; // Energy deposited in the reaction }; #endif