// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id$ // // Class description: // // Class for realisation of simple numerical methodes for integration of // functions with signature: double f(double). The methods based mainly on // algorithms given in the book : // An introduction to NUMERICAL METHODS IN C++, // B.H. Flowers, Claredon Press, Oxford, 1995. // // --------------------------- Member data ---------------------------- // // fFunction - pointer to the function to be integrated // fTolerance - accuracy of integration in Adaptive Gauss method // fMaxDepth = 100 - constant maximum iteration depth for // Adaptive Gauss method // // --------------------------- Methods -------------------------------- // // Trapezoidal, MidPoint, Gauss and Simpson(double a,double b,int n) // - integrate function pointed by fFunction from a to b by n iterations, // i.e. with Step (b-a)/n according to the correspondent method. // // AdaptGausIntegration(double a, double b) // - integrate function from a to be with accuracy <= fTolerance // ----------------------------- History ------------------------------ // // 26.03.97 V.Grichine ( Vladimir.Grichine@cern.ch ) #ifndef G4SIMPLEINTEGRATION_HH #define G4SIMPLEINTEGRATION_HH #include "G4Types.hh" typedef G4double (*function)(G4double) ; class G4SimpleIntegration { public: explicit G4SimpleIntegration( function pFunction ) ; G4SimpleIntegration( function pFunction, G4double pTolerance ) ; ~G4SimpleIntegration() ; // Simple integration methods G4double Trapezoidal(G4double xInitial, G4double xFinal, G4int iterationNumber ) ; G4double MidPoint(G4double xInitial, G4double xFinal, G4int iterationNumber ) ; G4double Gauss(G4double xInitial, G4double xFinal, G4int iterationNumber ) ; G4double Simpson(G4double xInitial, G4double xFinal, G4int iterationNumber ) ; // Adaptive Gauss integration with accuracy ~ fTolerance G4double AdaptGaussIntegration( G4double xInitial, G4double xFinal ) ; protected: G4double Gauss( G4double xInitial, G4double xFinal ) ; void AdaptGauss( G4double xInitial, G4double xFinal, G4double& sum, G4int& depth ) ; private: G4SimpleIntegration(const G4SimpleIntegration&); G4SimpleIntegration& operator=(const G4SimpleIntegration&); // Private copy constructor and assignment operator. private: function fFunction ; G4double fTolerance ; static G4int fMaxDepth ; }; #endif