/* This file is part of MAUS: http:// micewww.pp.rl.ac.uk:8080/projects/maus * * MAUS is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MAUS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MAUS. If not, see <http:// www.gnu.org/licenses/>. */ #ifndef SRC_COMMON_CPP_MATHS_POLYNOMIAL_MAP_HH #define SRC_COMMON_CPP_MATHS_POLYNOMIAL_MAP_HH #include <map> #include <vector> #include "Interface/Interpolator.hh" #include "Maths/Matrix.hh" #include "Maths/SymmetricMatrix.hh" #include "Maths/Vector.hh" namespace MAUS { /** PolynomialMap, an arbitrary order polynomial vector class. * * PolynomialMap describes a vector of multivariate polynomials * \f$y_i = a_0 + Sum (a_j x^j)\f$ * i.e. maps a vector \f$\vec{x}\f$ onto a vector \f$\vec{y}\f$ with * \f$\vec{y} = a_0 + sum(a_{j_1j_2...j_n} x_1^{j_1} x_2^{j_2}...x_n^{j_n})\f$. * Also algorithms to map a single index J into \f$j_1...j_n\f$.\n * \n * PolynomialMap represents the polynomial coefficients as a matrix of * doubles so that\n * \f$ \vec{y} = \mathbf{A} \vec{w} \f$\n * where \f$\vec{w}\f$ is a vector with elements given by \n * \f$ w_i = x_1^{i_1} x_2^{i_2} ... x_n^{i_n} \f$ \n * So the index \f$ i \f$ is actually itself a vector. The vectorisation of * \f$ i \f$ is handled by IndexByPower and IndexByVector methods. * IndexByPower gives an index like:\n * \f$ w_i = x_1^{i_1} x_2^{i_2} ... x_n^{i_n} \f$ \n * While IndexByVector gives an index like:\n * \f$ w_i = x_{i_1}x_{i_2} \ldots x_{i_n} \f$ \n * \n * PolynomialMap includes several functions to do least squares fits. * Here we find a polynomial of arbitrary dimension and order from a set of * points by the method of least squares. * Note that the problem must be overspecified, so the number of points must be * >= number of polynomial coefficients. * A few interesting variations on this theme... have a look!\n * \n */ class PolynomialMap : public VectorMap { public: // forward declaration of embedded class class PolynomialCoefficient; // ************************* // Constructors // ************************* /** @brief Construct a polynomial vector, passing polynomial coefficients * as a matrix. */ PolynomialMap(int pointDimension, Matrix<double> polynomialCoefficients); /** @brief Construct polynomial vector passing polynomial coefficients as * a list of PolynomialCoefficient objects. Any coefficients * missing from the vector are set to 0. Maximum order of the * polynomial is given by the maximum order of the coefficients * in the vector. */ explicit PolynomialMap(std::vector<PolynomialCoefficient> coefficients); /** @brief no memory allocated so doesn't do anything. */ ~PolynomialMap() { } /** @brief Construct a polynomial vector, passing polynomial coefficients * as a matrix. */ PolynomialMap(const PolynomialMap & original_instance); /** @brief Reinitialise the polynomial vector with new point (x) dimension * and coefficients. */ void SetCoefficients(int pointDim, Matrix<double> coeff); /** @brief Reinitialise the polynomial vector with new point (x) dimension * and coefficients. Any coefficients missing from the vector are * set to 0. Maximum order of the polynomial is given by the * maximum order of the coefficients in the vector. */ void SetCoefficients(std::vector<PolynomialCoefficient> coeff); /** @brief Set the coefficients. This method can't be used to change point * dimension or value dimension - any range mismatch will be * ignored. */ void SetCoefficients(Matrix<double> coeff); /** @brief Return the coefficients as a matrix of doubles. */ Matrix<double> GetCoefficientsAsMatrix() const; /** @brief Return the coefficients as a vector of PolynomialCoefficients, * including 0 values. */ std::vector<PolynomialCoefficient> GetCoefficientsAsVector() const; /** @brief Fill value with \f$ y_i \f$ at some set of \f$ x_i \f$ (point). * @param[in] point an array of length PointDimension(). * @param[in] value an array of length ValueDimension(). */ void F(const double * point, double * value) const; /** @brief Fill value with \f$ y_i \f$ at some set of \f$ x_i \f$ (point). * @param[in] point a vector of length PointDimension(). * @param[in] value a vector of length ValueDimension(). * * Note that there is no bounds checking here. */ void F(const Vector<double>& point, Vector<double>& value) const; /** @brief Length of the input point (x) vector. */ unsigned int PointDimension() const; /** @brief Length of the output value (y) vector. */ unsigned int ValueDimension() const; /** @brief Index of highest power - 0 is const, 1 is linear, 2 is quadratic... */ unsigned int PolynomialOrder() const; /** @brief Polymorphic copy constructor. This is a special copy constructor * for inheritance structures, so that I can call vectorMap->Clone() * and it will create a vectorMap of the appropriate child type * without the caller needing to know what type vectorMap actually is. */ PolynomialMap * Clone() const; /** @brief Return a copy, centred on point. */ PolynomialMap * Recentred(double* point) const; /** @brief Return operator \f$ R = P(Q) \f$ - NOT IMPLEMENTED */ PolynomialMap Chain(const PolynomialMap& Q) const; /** @brief Return pseudoinverse of the coefficient matrix. */ PolynomialMap * Inverse() const; /** @brief Return inverse of the polynomial truncated at order n (in general * an infinite series that does not converge, so beware!) * - NOT IMPLEMENTED */ PolynomialMap Inverse(int max_order) const; /** @brief Make a vector like \f$(c, x, x^2, x^3...)\f$. * @param[in] point should be of size PointDimension(). * @param[in] polyVector should be of size NumberOfPolynomialCoefficients(). * * could be static but faster as member function (use lookup table for * _polyKey). */ Vector<double>& MakePolynomialVector(const Vector<double> & point, Vector<double>& polyVector) const; /** @brief Make a vector like \f$(c, x, x^2, x^3...)\f$. * @param[in] point should be of size PointDimension(). * @param[in] polyVector should be of size NumberOfPolynomialCoefficients(). * * Could be static but faster as member function (use lookup table for * _polyKey). */ double * MakePolynomialVector(double const * const polyVector, double* point) const; /** @brief Take a vector like \f$(c, x, x^2, x^3...)\f$ and extract the * first order values (i.e. x, y, z, ...). * @param[in] polyVector should be of size NumberOfPolynomialCoefficients(). * @param[in] point should be of size PointDimension(). */ Vector<double>& UnmakePolynomialVector(const Vector<double>& polyVector, Vector<double>& point) const; /** @brief Take a vector like \f$(c, x, x^2, x^3...)\f$ and extract the * first order values (i.e. x, y, z, ...). * @param[in] polyVector should be of size NumberOfPolynomialCoefficients(). * @param[in] point should be of size PointDimension(). */ double* UnmakePolynomialVector(const double* polyVector, double* point) const; /** Transforms from a 1d index of polynomial coefficients to an nd index. * This is slow - you should use it to build a lookup table. * For polynomial term \f$x_1^i x_2^j ... x_d^n\f$ index like [i][j] ... [n] * e.g. \f$x_1^4 x_2^3 = x_1^4 x_2^3 x_3^0 x_4^0\f$ = {4,3,0,0}. */ static std::vector<int> IndexByPower(int index, int nInputVariables); /** Transforms from a 1d index of polynomial coefficients to an nd index. * This is slow - you should use it to build a lookup table. * For polynomial term \f$x_i x_j...x_n\f$ index like [i][j] ... [n] * e.g. \f$x_1^4 x_2^3\f$ = {1,1,1,1,2,2,2} */ static std::vector<int> IndexByVector(int index, int nInputVariables); /** Returns the number of coefficients required for an arbitrary dimension, * order polynomial e.g. * \f$a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 xz + a_8 yz + a_9 z^2\f$ * => NumberOfPolynomialCoefficients(3,2) = 9 (indexing starts from 0). */ static size_t NumberOfPolynomialCoefficients(int pointDimension, int order); inline size_t NumberOfPolynomialCoefficients(); /** Write out the PolynomialMap (effectively just polyCoeffs). */ friend std::ostream& operator<<(std::ostream&, const PolynomialMap&); /** Control the formatting of the polynomial vector. If PrintHeaders is true, * then every time I write a PolynomialMap it will write the header also * (default). */ static void PrintHeaders(bool willPrintHeaders) {print_headers_ = willPrintHeaders;} /// Write out the header (PolynomialByPower index for each element). void PrintHeader(std::ostream& out, char int_separator = '.', char str_separator = ' ', int length = 14, bool pad_at_start = true) const; /** @brief Finds the polynomial pol that minimises * sum_i ( w_i (\vec{y_i} - Pol(\vec{x_i}))^2. * y_i = values[i], * x_i = points[i], * w_i = weightFunction(x_i) OR weights[i], * polynomialOrder is the order of pol * @param[in] points input variables of which the polynomials are a function * @param[in] values output variables of which the polynomials are an * expansion * @param[in] polynomialOrder the maximum order of the polynomials * @param[in] weightFunction weight as a function of point index * @param[in] point_errors matrix of the error on the measurement of the * points; should be a N*N matrix with N the same length as Pol. * Say x_i has measured error \epsilon_i then the error matrix * should be filled with elements <Pol_j(\epsilon) Pol_k(\epsilon)>. * Nb if w_i not defined, I assume that w_i = 1 i.e. unweighted points and * values should be the same length; points[i] should all be the same length; * values[i] should all be the same length weight function should be a vector * map that has PointDimension of points and returns a weight of dimension 1 */ static PolynomialMap* PolynomialLeastSquaresFit( const std::vector< std::vector<double> >& points, const std::vector< std::vector<double> >& values, unsigned int polynomialOrder, const VectorMap* weightFunction, Matrix<double> point_errors = Matrix<double>()); static PolynomialMap* PolynomialLeastSquaresFit( const std::vector< std::vector<double> >& points, const std::vector< std::vector<double> >& values, unsigned int polynomialOrder, const std::vector<double>& weights = std::vector<double>(), Matrix<double> point_errors = Matrix<double>()); /** Find a polynomial least squares fit given that I know certain coefficients * already (stored in coeffs). For example, say I know the polynomial to * 2nd order, I want to extend to 3rd order using a least squares fit. */ static PolynomialMap* ConstrainedPolynomialLeastSquaresFit (const std::vector< std::vector<double> >& points, const std::vector< std::vector<double> >& values, unsigned int polynomialOrder, std::vector< PolynomialCoefficient > coeffs, const std::vector<double>& weights = std::vector<double>()); /** Find a polynomial least squares fit given that I know certain coefficients * already. After finding the fit, calculate "chi2" for each particle. * Compare x_out with polynomial fit of x_in, x_pol, using * \f$\delta_{\chi^2} = (\vec{x_{out}} - \vec{x_{pol}}).T() \mathbf{V}^{-1} (\vec{x_{out}} - \vec{x_{pol}}).\f$ * If * \f$\sum(\delta_{\chi^2})/totalWeight > \chi^2_{limit}, \f$ * calculate * \f$\chi^2_{out} = \vec(x_out).T() V^{-1} \vec(x_out)\f$ * and discard particles with * \f$\chi^2_{out} > chi^2_{start}*(discardStep^n)\f$ * repeat until * \f$\sum(\delta_{\chi^2})/totalWeight <= chi^2_{limit},\f$ * each time incrementing n by 1 * if \f$\chi^2_{start} < 0,\f$ start with maximum chi^2; if * chi2End != NULL, put the final value in chi2End */ static PolynomialMap* Chi2ConstrainedLeastSquaresFit (const std::vector< std::vector<double> >& xin, const std::vector< std::vector<double> >& xout, unsigned int polynomialOrder, std::vector< PolynomialMap::PolynomialCoefficient > coeffs, double chi2Start, double discardStep, double* chi2End, double chi2Limit, std::vector<double> weights, bool firstIsMean = false); /** Find a polynomial fit to an arbitrary function vec. * Here the LLS can choose what points it wants to study * Sweep out from centre of LLS trying to keep chi2 small * As chi2 goes out of tolerance, try adding a new order polynomial * Guarantees that I will return a Polynomial that fits within chi2 max and * sometimes this means the polynomial order will be less than chi2 max. If * I can't find any fit at all, will return NULL. On return, delta holds the * value of delta at the limit of validity */ static PolynomialMap* Chi2SweepingLeastSquaresFit (const VectorMap& vec, unsigned int polynomialOrder, std::vector< PolynomialMap::PolynomialCoefficient > coeffs, double chi2Max, std::vector<double>& delta, double deltaFactor, int maxNumberOfSteps); /** Sweep out from centre of LLS trying to keep chi2 small * Here I let the validity region expand independently in each direction * (which is slower as I need to test many more cases) First do * Chi2SweepingLeastSquaresFit; then expand the validity region sequentially * in each direction. Idea is to make a good fit even in the case that delta * doesn't scale appropriately between different directions */ static PolynomialMap* Chi2SweepingLeastSquaresFitVariableWalls (const VectorMap& vec, unsigned int polynomialOrder, std::vector< PolynomialMap::PolynomialCoefficient > coeffs, double chi2Max, std::vector<double>& delta, double deltaFactor, int maxNumberOfSteps, std::vector<double> max_delta); /** @brief Return the mean of some set of values, using some set of weights */ static Vector<double> Means(std::vector<std::vector<double> > values, std::vector<double> weights); /** @brief Return the covariance matrix of some set of values, using some set * of weights and some mean. * If length of weights is not equal to length of values use weights = 1. * If length of mean is not equal to length of first value recalculate mean */ static SymmetricMatrix Covariances( const std::vector<std::vector<double> >& values, const std::vector<double>& weights, const Vector<double>& mean); /** Make a hypercube of points with half width of delta in each dimension so * that the number of points is at least * multiplier*NumberOfPolynomialCoefficients(i_order, delta.size()) * - so that if multiplier >= 1 it will always define a polynomial of order * i_order. Require evenly spaced ito position, sometimes this means I make * more points on the shell */ static std::vector< std::vector<double> > PointBox(std::vector<double> delta, int i_order); /** Make a hyperellipsoid of points where magnitude of each vector * \f$\vec{u}\f$ * is chosen such that * \f$\vec{u}^T \mathbf{D}^{-1} \vec{u}=1\f$ * and number of points is at least * multiplier*NumberOfPolynomialCoefficients(i_order, delta.num_row()) * - so that if multiplier >= 1 * it will always define a polynomial of order i_order. delta should be a * symmetric square matrix. Note that this is just a correctly scaled version * of PointBox, which defines the distribution of points on the shell. */ static std::vector< std::vector<double> > PointShell(Matrix<double> scale_matrix, int i_order); /** Return chi2 of residuals of some set of output variables compared with * the polynomial vector of some set of input variables Here Chi2 Avg is * defined as * \f$sum( \vec{v}^T \mathbf{M}^{-1} \vec{v})\f$ where v is the vector of * residuals and M is covariance matrix of v */ double GetAvgChi2OfDifference(std::vector< std::vector<double> > in, std::vector< std::vector<double> > out); /** Print a sequence in a column with some predefined width. * @param out output stream to which sequence is printed * @param container sequence to be printed. Container class must have * begin() and end() methods that return a Container::const_iterator * that reference the beginning and end of the container. The * const_iterator methods must dereference to an object with the * <<(std::ostream&) operator defined. The const_iterator must have * a suffix increment (foo++) operator defined. * @param T_separator separator that separates contained elements * @param str_separator separator that pads the overall output * @param length to which the output should be padded. Output exceeding this * length will not be truncated * @param pad_at_start set to true to pad at the start (i.e. right align); * set to false to pad at the end (i.e. left align) * Should probably go in a "utility function" namespace, that does not * currently exist. */ template < class Container > static void PrintContainer(std::ostream& out, const Container& container, char T_separator, char str_separator, size_t length, bool pad_at_start); /** Return true if sequences a and b are identical; * a must have an iterator object * dereferenced by *it must have increment prefix operator defined and with * != operator defined by the object pointed to by it */ template <class TEMP_CLASS, class TEMP_ITER> static bool IterableEquality(const TEMP_CLASS& a, const TEMP_CLASS& b, TEMP_ITER a_begin, TEMP_ITER a_end, TEMP_ITER b_begin, TEMP_ITER b_end); // PolynomialCoefficient sub-class - useful, could be extended if needed // (e.g. become an iterator etc) /** Polynomial coefficient sub class represents a coefficient in a * PolynomialMap object. Each coefficient has an input variable that it * represents (i.e. powers on x), an output variable that it yields (i.e. * the y value) and a value. */ class PolynomialCoefficient { public: /** Constructor * @param inVariablesByVector is x power indexed like e.g. * \f$x_1^4 x_2^3 =\f$ {1,1,1,1,2,2,2} * @param outVariable y variable * @param coefficient value * e.g. y_2 = x_1^2 + 2 x_1 x_2 would have two coefficients, both with * outVariable 2; but with inVariable {1,1} and coefficient 1.0; or with * inVariable {1, 2} and coefficient 2.0 */ PolynomialCoefficient(std::vector<int> inVariablesByVector, int outVariable, double coefficient) : _inVarByVec(inVariablesByVector), _outVar(outVariable), _coefficient(coefficient) {} /** @returns the vector of input variables */ std::vector<int> InVariables() const {return _inVarByVec;} /** @returns the output variable */ int OutVariable() const {return _outVar;} /** @returns the value of the coefficient */ double Coefficient() const {return _coefficient;} /** Set the input variables */ std::vector<int> InVariables(std::vector<int> inVar ) { _inVarByVec = inVar; return _inVarByVec; } /** Set the output variable */ int OutVariable(int outVar) { _outVar = outVar; return _outVar; } /** Set the coefficient */ double Coefficient(double coeff) { _coefficient = coeff; return _coefficient; } /** transform coefficient from subspace space_in to subspace space_out, * both subspaces of some larger space if any of coeff variables is not * in space_out OR not in space_in, leave this coeff untouched and Exception * so for coeff({1,2},0,1.1), * coeff.space_transform({0,2,3,5}, {4,7,1,2,3,0}) would return * coeff({3,4},5,1.1) * @param space_in vector indexing the vector of each dimension in the * input subspace * @param space_out vector indexing the vector of each dimension in the * output subspace */ void SpaceTransform(std::vector<int> space_in, std::vector<int> space_out); /** if var is in inVariables return true */ bool HasInVariable(int var) const { for (size_t i = 0; i < _inVarByVec.size(); i++) if (_inVarByVec[i] == var) return true; return false; } private: std::vector<int> _inVarByVec; int _outVar; double _coefficient; }; private: int point_dimension_; std::vector< std::vector<int> > index_key_by_power_; // std::vector<int>[i_1] = j_1 std::vector< std::vector<int> > index_key_by_vector_; // std::vector<int>[j_1] = i_1 Matrix<double> coefficient_matrix_; std::vector<PolynomialCoefficient> polynomial_vector_; static bool print_headers_; }; std::ostream& operator<<(std::ostream&, const PolynomialMap&); // template functions template <class TEMP_CLASS, class TEMP_ITER> bool PolynomialMap::IterableEquality (const TEMP_CLASS& a, const TEMP_CLASS& b, TEMP_ITER a_begin, TEMP_ITER a_end, TEMP_ITER b_begin, TEMP_ITER b_end) { TEMP_ITER a_it = a_begin; TEMP_ITER b_it = b_begin; while (a_it != a_end && b_it != b_end) { if ( *a_it != *b_it ) return false; ++a_it; ++b_it; } if ( a_it != a_end || b_it != b_end ) return false; return true; } size_t PolynomialMap::NumberOfPolynomialCoefficients() { return NumberOfPolynomialCoefficients(point_dimension_, PolynomialOrder()); } Vector<double> generate_polynomial_2D(const PolynomialMap & map, const size_t point_variable_index, const size_t value_variable_index, const double point_variable_min, const double point_variable_max, const double point_variable_increment); } // namespace MAUS #endif