/* This file is part of MAUS: http:// micewww.pp.rl.ac.uk:8080/projects/maus * * MAUS is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MAUS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MAUS. If not, see . */ /* Author: Peter Lane */ #ifndef COMMON_CPP_OPTICS_POLYNOMIAL_TRANSFER_MAP_HH #define COMMON_CPP_OPTICS_POLYNOMIAL_TRANSFER_MAP_HH #include #include #include "Utils/Exception.hh" #include "src/common_cpp/Optics/CovarianceMatrix.hh" #include "src/common_cpp/Optics/TransferMap.hh" // Forward declarations for OpticsModel.hh class OpticsModel; namespace MAUS { // Forward declarations for src/legacy/Interface/PolynomialMap.hh class PolynomialMap; // Forward declarations for PhaseSpaceVector.hh class PhaseSpaceVector; /** @class PolynomialTransferMap is a polynomial mapping, M, of a phase space vector from * a plane at Z1 to another plane at Z2 such that a PhaseSpaceVector with * coordinates U transforms like (using Einstein's summation convention) * U(Z2)_p = M_ip U(Z1)_i + M_ijp U(Z1)_i U(Z1)_j * + M_ijkp U(Z1)_i U(Z1)_j U(Z1)_k + ... * extending to arbitrary order. A reference trajectory is assumed, that is the * transformation is applied about some phase space vector that is taken to be * a zero point. In other words, U(Z) is actually the delta vector from some * reference trajectory U_0: * V(Z) = U_0(Z) + U(Z), * where V(Z) is the phase space vector that the PolynomialTransferMap is applied to. */ class PolynomialTransferMap : public TransferMap { public: // ****************************** // Constructors // ****************************** /* @brief constructor for different input and output reference trajectories. * @params polynomial_map the actual polynomial map * @params reference_trajectory_in input reference trajectory * @params reference_trajectory_out output reference trajectory */ PolynomialTransferMap(const PolynomialMap& polynomial_map, const PhaseSpaceVector& reference_trajectory_in, const PhaseSpaceVector& reference_trajectory_out); /* @brief constructor for identical input and output reference trajectories. * @params polynomial_map the actual polynomial map * @params reference_trajectory input/output reference trajectory */ PolynomialTransferMap(const PolynomialMap& polynomial_map, const PhaseSpaceVector& reference_trajectory); /* @brief copy constructor */ PolynomialTransferMap(const PolynomialTransferMap& original_instance); /* @brief destructor */ ~PolynomialTransferMap(); friend std::ostream& operator<<(std::ostream& out, const PolynomialTransferMap& tm); TransferMap * Inverse() const; CovarianceMatrix Transport(const CovarianceMatrix & covariances) const; PhaseSpaceVector Transport(const PhaseSpaceVector & vector) const; protected: PolynomialTransferMap(); // ****************************** // First-order Map Functions // ****************************** Matrix CreateTransferMatrix() const; PolynomialMap const * const polynomial_map_; PhaseSpaceVector const * const reference_trajectory_in_; PhaseSpaceVector const * const reference_trajectory_out_; }; std::ostream& operator<<(std::ostream& out, const PolynomialTransferMap& map); } // namespace MAUS #endif