/* This file is part of MAUS: http:// micewww.pp.rl.ac.uk:8080/projects/maus * * MAUS is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MAUS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MAUS. If not, see . */ /* Author: Peter Lane */ #include #include #include #include #include #include #include #include "CLHEP/Random/JamesRandom.h" #include "CLHEP/Random/RandGauss.h" #include "CLHEP/Matrix/SymMatrix.h" #include "gtest/gtest.h" #include "Maths/Matrix.hh" #include "Maths/SymmetricMatrix.hh" #include "src/common_cpp/Optics/CovarianceMatrix.hh" using MAUS::CovarianceMatrix; using MAUS::Matrix; using MAUS::Vector; using MAUS::SymmetricMatrix; using ::CLHEP::HepSymMatrix; class CovarianceMatrixTest : public ::testing::Test { public: CovarianceMatrixTest() { } protected: // CLHEP::HepRandomEngine * random_engine_; CLHEP::RandGauss * random_gauss_; static const double mass_; static const double momentum_; static const double charge_; static const double Bz_; static const double Ltwiddle_t_; static const double emittance_t_; static const double beta_t_; static const double alpha_t_; static const double emittance_x_; static const double beta_x_; static const double alpha_x_; static const double emittance_y_; static const double beta_y_; static const double alpha_y_; static const double emittance_l_; static const double beta_l_; static const double alpha_l_; static const double dispersion_x_; static const double dispersion_prime_x_; static const double dispersion_y_; static const double dispersion_prime_y_; static const double rotation_angle_; static const double means_data_[6]; static const MAUS::Vector means_; static const double penn_covariances_data_[36]; static const MAUS::CovarianceMatrix penn_covariances_; static const double twiss_covariances_data_[36]; static const MAUS::CovarianceMatrix twiss_covariances_; static const double positive_definite_data_[36]; static const MAUS::CovarianceMatrix positive_definite_matrix_; static const double non_positive_definite_data_[36]; static const MAUS::CovarianceMatrix non_positive_definite_matrix_; static const double rotated_penn_covariance_data_[36]; static const MAUS::CovarianceMatrix rotated_penn_covariances_; virtual void SetUp() { // setup Normally-distributed, random number generator // random_engine_ = new CLHEP::HepJamesRandom(-1); random_gauss_ = new CLHEP::RandGauss(new CLHEP::HepJamesRandom(-1)); } virtual void TearDown() { delete random_gauss_; } }; // ************************************************// // CovarianceMatrixTest static const initializations// // ************************************************// const double CovarianceMatrixTest::mass_ = 105.658367; // MeV/c^2 const double CovarianceMatrixTest::momentum_ = 199.804294; // MeV/c const double CovarianceMatrixTest::charge_ = -1.0; // e const double CovarianceMatrixTest::Bz_ = 0.004; // T? const double CovarianceMatrixTest::Ltwiddle_t_ = 0.00650534498541; // mm? const double CovarianceMatrixTest::emittance_t_ = 5.90976389295; // mm const double CovarianceMatrixTest::beta_t_ = 325.783144453; // mm const double CovarianceMatrixTest::alpha_t_ = 0.981532870919; const double CovarianceMatrixTest::emittance_x_ = 8.21460387276; // mm const double CovarianceMatrixTest::beta_x_ = 234.053018912; // mm const double CovarianceMatrixTest::alpha_x_ = 0.665453972738; const double CovarianceMatrixTest::emittance_y_ = 8.25981656173; // mm const double CovarianceMatrixTest::beta_y_ = 233.413185153; // mm const double CovarianceMatrixTest::alpha_y_ = 0.742730085244; const double CovarianceMatrixTest::emittance_l_ = 18.6075680584; // mm const double CovarianceMatrixTest::beta_l_ = 19464.8337931; // mm const double CovarianceMatrixTest::alpha_l_ = 0.0434076437382; const double CovarianceMatrixTest::dispersion_x_ = 14.7689567014; const double CovarianceMatrixTest::dispersion_prime_x_ = 45.1060971239; const double CovarianceMatrixTest::dispersion_y_ = 14.7689567014; const double CovarianceMatrixTest::dispersion_prime_y_ = 45.1060971239; const double CovarianceMatrixTest::rotation_angle_ = 0.628319; // pi / 5 // from BeamMaker/xboa {ct, E, x, px, y, py} const double CovarianceMatrixTest::means_data_[6] = { +99740014.0111, 226.033429351, +0.843461236593, -0.0217829119313, -0.250110599127, 0.76387175952 }; // from BeamMaker + xboa {ct, E, x, px, y, py} const double CovarianceMatrixTest::penn_covariances_data_[36] = { +1.91531138e+05, -8.53413918e+01, +0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -8.53413918e+01, 2.02192558e+01, +1.32112012e+00, 4.03485323e+00, -1.03025553e+01, 5.79008832e+00, +0.00000000e+00, 1.32112012e+00, +1.01811730e+03, -6.12884830e+02, 0.00000000e+00, 6.06385733e+02, +0.00000000e+00, 4.03485323e+00, -6.12884830e+02, 1.11306115e+03, -6.06385733e+02, 0.00000000e+00, +0.00000000e+00, -1.03025553e+01, +0.00000000e+00, -6.06385733e+02, 1.01811730e+03, -6.12884830e+02, +0.00000000e+00, 5.79008832e+00, +6.06385733e+02, 0.00000000e+00, -6.12884830e+02, 1.11306115e+03 }; // from BeamMaker + xboa {ct, E, x, px, y, py} const double CovarianceMatrixTest::twiss_covariances_data_[36] = { +1.91531139e+05, -8.53413918e+01, +1.25053024e+02, 1.94593790e+00, -3.57346382e+02, 8.03446694e+01, -8.53413918e+01, 2.02192558e+01, +1.32112013e+00, 4.03485324e+00, -1.03025553e+01, 5.79008832e+00, +1.25053024e+02, 1.32112013e+00, +1.01671668e+03, -5.77575205e+02, -4.63520838e+01, 6.28878344e+02, +1.94593790e+00, 4.03485324e+00, -5.77575205e+02, 1.06904491e+03, -5.84662003e+02, 1.32913208e+01, -3.57346382e+02, -1.03025553e+01, -4.63520838e+01, -5.84662003e+02, 1.01951792e+03, -6.48194455e+02, +8.03446694e+01, 5.79008832e+00, +6.28878344e+02, 1.32913208e+01, -6.48194455e+02, 1.15916946e+03 }; const double CovarianceMatrixTest::positive_definite_data_[36] = { 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1. }; const double CovarianceMatrixTest::non_positive_definite_data_[36] = { 0., 1., 2., 3., 4., 5., 1., 6., 7., 8., 9., 10., 2., 7., 11., 12., 13., 14., 3., 8., 12., 15., 16., 17., 4., 9., 13., 16., 18., 19., 5., 10., 14., 17., 19., 20. }; // Rotated penn_covariances_ using Mathematica const double CovarianceMatrixTest::rotated_penn_covariance_data_[36] = { +1.91531138e+05, -8.53413918e+01, +0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -8.53413918e+01, 2.02192558e+01, -4.98688144+00, 6.66759336e+00, -9.11147725e+00, 2.31265263e+00, +0.00000000e+00, -4.98688144e+00, +1.01811730e+03, -6.12884830e+02, 0.00000000e+00, 6.06385735e+02, +0.00000000e+00, 6.66759336e+00, -6.12884831e+02, 1.11306115e+03, -1.87383497e+02, 0.00000000e+00, +0.00000000e+00, -9.11147725e+00, +0.00000000e+00, -6.06385733e+02, 1.01811730e+03, -6.12884830e+02, +0.00000000e+00, 2.31265263e+00, +6.06385735e+02, 0.00000000e+00, -6.12884831e+02, 1.11306115e+03 }; const MAUS::Vector CovarianceMatrixTest::means_ = MAUS::Vector(CovarianceMatrixTest::means_data_, 6); const MAUS::CovarianceMatrix CovarianceMatrixTest::penn_covariances_ = MAUS::CovarianceMatrix(CovarianceMatrixTest::penn_covariances_data_); const MAUS::CovarianceMatrix CovarianceMatrixTest::twiss_covariances_ = MAUS::CovarianceMatrix(CovarianceMatrixTest::twiss_covariances_data_); const MAUS::CovarianceMatrix CovarianceMatrixTest::positive_definite_matrix_ = MAUS::CovarianceMatrix(CovarianceMatrixTest::positive_definite_data_); const MAUS::CovarianceMatrix CovarianceMatrixTest::non_positive_definite_matrix_ = MAUS::CovarianceMatrix(CovarianceMatrixTest::non_positive_definite_data_); const MAUS::CovarianceMatrix CovarianceMatrixTest::rotated_penn_covariances_ = MAUS::CovarianceMatrix(CovarianceMatrixTest::rotated_penn_covariance_data_); // *********** // test cases // *********** TEST_F(CovarianceMatrixTest, DefaultConstructor) { const CovarianceMatrix zeros; double total = 0.0; ASSERT_EQ(zeros.size(), static_cast(6)); for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= 6; ++column) { total += zeros(row, column); } } ASSERT_TRUE(total < 1.e-9); } TEST_F(CovarianceMatrixTest, CopyConstructors) { // CovarianceMatrix copy const CovarianceMatrix twiss_ellipse = CovarianceMatrix::CreateFromTwissParameters( mass_, momentum_, emittance_x_, beta_x_, alpha_x_, emittance_y_, beta_y_, alpha_y_, emittance_l_, beta_l_, alpha_l_, dispersion_x_, dispersion_prime_x_, dispersion_y_, dispersion_prime_y_); const CovarianceMatrix twiss_too(twiss_ellipse); ASSERT_EQ(twiss_too, twiss_ellipse); // Matrix copies const Matrix double_matrix(6, 6, non_positive_definite_data_); const CovarianceMatrix double_covariances(double_matrix); ASSERT_EQ(double_covariances, non_positive_definite_matrix_); const Matrix rows_too_small(4, 6, 1.); bool testpass = true; try { const CovarianceMatrix rows_too_small_covariances(rows_too_small); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); const Matrix columns_too_small(4, 6, 1.); testpass = true; try { const CovarianceMatrix columns_too_small_covariances(columns_too_small); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // SymmetricMatrix copies const SymmetricMatrix symmetric_matrix(6, non_positive_definite_data_); const CovarianceMatrix symmetric_covariances(symmetric_matrix); ASSERT_EQ(symmetric_covariances, non_positive_definite_matrix_); const SymmetricMatrix too_small(4, 1.); testpass = true; try { const CovarianceMatrix too_small_covariances(too_small); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // HepSymMatrix copy const HepSymMatrix hep_sym_matrix(6, 1.); const CovarianceMatrix identity(hep_sym_matrix); ASSERT_EQ(identity, positive_definite_matrix_); const HepSymMatrix hep_too_small(4, 1.); testpass = true; try { const CovarianceMatrix too_small_hep(hep_too_small); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); // TMatrixDSym copy const TMatrixDSym root_sym_matrix(6, non_positive_definite_data_); const CovarianceMatrix root_covariances(root_sym_matrix); ASSERT_EQ(root_covariances, non_positive_definite_matrix_); TMatrixDSym root_too_small(4); Double_t seed = 2.; root_too_small.RandomizePD(-2, 2, seed); testpass = true; try { const CovarianceMatrix too_small_covariances(root_too_small); testpass = false; } catch (MAUS::Exceptions::Exception exc) {} ASSERT_TRUE(testpass); } TEST_F(CovarianceMatrixTest, PennParametrization) { const CovarianceMatrix penn_ellipse = CovarianceMatrix::CreateFromPennParameters( mass_, momentum_, charge_, Bz_, Ltwiddle_t_, emittance_t_, beta_t_, alpha_t_, emittance_l_, beta_l_, alpha_l_, dispersion_x_, dispersion_prime_x_, dispersion_y_, dispersion_prime_y_); CovarianceMatrix difference(penn_covariances_ - penn_ellipse); double error; /* for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= 6; ++column) { fprintf(stdout, "%f ", penn_ellipse(row, column)); } fprintf(stdout, "\n"); } */ for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= 6; ++column) { // percent difference if (penn_covariances_(row, column) > 0.0) { error = fabs(difference(row, column) / penn_covariances_(row, column)); } else { error = fabs(difference(row, column)); } /* fprintf(stdout, "difference (%d, %d): %f\t", row, column, difference(row, column)); fprintf(stdout, "percent error (%d, %d): %f\n", row, column, error); */ // FIXME(plane1@hawk.iit.edu) Independently verify t & E covariances if ((row < 3) && (column < 3)) { // EXPECT_TRUE(error < 1e-4); } if ((row > 2) && (column > 2) && (row < 5) && (column < 5)) { EXPECT_TRUE(error < 1e-4); } if ((row > 4) && (column > 4) && (row < 7) && (column < 7)) { EXPECT_TRUE(error < 1e-4); } } } // fflush(stdout); } TEST_F(CovarianceMatrixTest, TwissParametrization) { const CovarianceMatrix twiss_ellipse = CovarianceMatrix::CreateFromTwissParameters( mass_, momentum_, emittance_x_, beta_x_, alpha_x_, emittance_y_, beta_y_, alpha_y_, emittance_l_, beta_l_, alpha_l_, dispersion_x_, dispersion_prime_x_, dispersion_y_, dispersion_prime_y_); CovarianceMatrix difference(twiss_covariances_ - twiss_ellipse); double error; // FIXME(plane1@hawk.iit.edu) Figure out a way to calculate // mixed axis covariances (i.e. , , etc...). /* for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= 6; ++column) { fprintf(stdout, "%f ", twiss_ellipse(row, column)); } fprintf(stdout, "\n"); } */ for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= 6; ++column) { // percent difference error = fabs(difference(row, column) / twiss_covariances_(row, column)); /* fprintf(stdout, "difference (%d, %d): %f\t", row, column, difference(row, column)); fprintf(stdout, "percent error (%d, %d): %f\n", row, column, error); */ if ((row < 3) && (column < 3)) { EXPECT_TRUE(error < 1e-4); } if ((row > 2) && (column > 2) && (row < 5) && (column < 5)) { EXPECT_TRUE(error < 1e-4); } if ((row > 4) && (column > 4) && (row < 7) && (column < 7)) { EXPECT_TRUE(error < 1e-4); } } } // fflush(stdout); } TEST_F(CovarianceMatrixTest, PositiveDefiniteness) { ASSERT_TRUE(positive_definite_matrix_.IsPositiveDefinite()); const CovarianceMatrix twiss_ellipse = CovarianceMatrix::CreateFromTwissParameters( mass_, momentum_, emittance_x_, beta_x_, alpha_x_, emittance_y_, beta_y_, alpha_y_, emittance_l_, beta_l_, alpha_l_, dispersion_x_, dispersion_prime_x_, dispersion_y_, dispersion_prime_y_); ASSERT_TRUE(twiss_ellipse.IsPositiveDefinite()); ASSERT_FALSE(non_positive_definite_matrix_.IsPositiveDefinite()); const CovarianceMatrix penn_ellipse = CovarianceMatrix::CreateFromPennParameters( mass_, momentum_, charge_, Bz_, Ltwiddle_t_, emittance_t_, beta_t_, alpha_t_, emittance_l_, beta_l_, alpha_l_, dispersion_x_, dispersion_prime_x_, dispersion_y_, dispersion_prime_y_); ASSERT_FALSE(penn_ellipse.IsPositiveDefinite()); } TEST_F(CovarianceMatrixTest, RotateEllipse) { const CovarianceMatrix rotated_penn_ellipse = rotate(penn_covariances_, rotation_angle_); CovarianceMatrix difference(rotated_penn_covariances_ - rotated_penn_ellipse); double error; for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= 6; ++column) { // percent difference if (penn_covariances_(row, column) > 0.0) { error = fabs(difference(row, column) / rotated_penn_covariances_(row, column)); } else { error = fabs(difference(row, column)); } EXPECT_TRUE(error < 1e-4); } } }