// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id$ // ///////////////////////////////////////////////////////////////////////////////// // Class Name: G4AdjointPosOnPhysVolGenerator // Author: L. Desorgher // Organisation: SpaceIT GmbH // Contract: ESA contract 21435/08/NL/AT // Customer: ESA/ESTEC ///////////////////////////////////////////////////////////////////////////////// // // CHANGE HISTORY // -------------- // ChangeHistory: // 1st June 2006 creation by L. Desorgher // //------------------------------------------------------------- // Documentation: // This class is responsible for the generation of primary adjoint particle on the external surface of a user selected volume. // The particle are generated uniformly on the surface with the angular distribution set to a cosine law relative to normal of the surface. // It is equivalent to the flux going in from the surface if an isotropic flux is considered outside. // It uses ray tracking technique and can be applied to all kind of convex volume. Uisng the ray tracking technique the area // of the external surface is also computed. The area is needed to fix the weight of the primary adjoint particle. // At the time of the development of this class, generation of particle on volume surface and computation of surface was limited in G4, // therfore the general ray tracking technique was adopted. It could be now (2009) that direct method of G4VSolid could be used instead. To be checked! // // // #ifndef G4AdjointPosOnPhysVolGenerator_h #define G4AdjointPosOnPhysVolGenerator_h 1 #include "G4VPhysicalVolume.hh" #include "G4AffineTransform.hh" #include "G4ThreeVector.hh" class G4VSolid; class G4AdjointPosOnPhysVolGenerator /////////////////////// { //-------- public: //without description //-------- static G4AdjointPosOnPhysVolGenerator* GetInstance(); //-------- public: //public methods //-------- G4VPhysicalVolume* DefinePhysicalVolume(const G4String& aName); void DefinePhysicalVolume1(const G4String& aName); G4double ComputeAreaOfExtSurface(); G4double ComputeAreaOfExtSurface(G4int NStat); G4double ComputeAreaOfExtSurface(G4double epsilon); G4double ComputeAreaOfExtSurface(G4VSolid* aSolid); G4double ComputeAreaOfExtSurface(G4VSolid* aSolid,G4int NStat); G4double ComputeAreaOfExtSurface(G4VSolid* aSolid,G4double epsilon); void GenerateAPositionOnTheExtSurfaceOfASolid(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); void GenerateAPositionOnTheExtSurfaceOfTheSolid(G4ThreeVector& p, G4ThreeVector& direction); void GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p, G4ThreeVector& direction); void GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p, G4ThreeVector& direction, G4double& costh_to_normal); //inline public methods inline void SetSolid(G4VSolid* aSolid){theSolid=aSolid;} inline G4double GetAreaOfExtSurfaceOfThePhysicalVolume(){return AreaOfExtSurfaceOfThePhysicalVolume;} inline G4double GetCosThDirComparedToNormal(){return CosThDirComparedToNormal;} //--------- private: //private methods //--------- G4AdjointPosOnPhysVolGenerator(); ~G4AdjointPosOnPhysVolGenerator(); G4double ComputeAreaOfExtSurfaceStartingFromSphere(G4VSolid* aSolid,G4int NStat); G4double ComputeAreaOfExtSurfaceStartingFromBox(G4VSolid* aSolid,G4int NStat); void GenerateAPositionOnASolidBoundary(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); G4double GenerateAPositionOnASphereBoundary(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); G4double GenerateAPositionOnABoxBoundary(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); void ComputeTransformationFromPhysVolToWorld(); //--------- private: //attributes //--------- static G4AdjointPosOnPhysVolGenerator* theInstance; G4VSolid* theSolid; G4VPhysicalVolume* thePhysicalVolume; G4bool UseSphere; G4String ModelOfSurfaceSource; G4AffineTransform theTransformationFromPhysVolToWorld; G4double AreaOfExtSurfaceOfThePhysicalVolume; G4double CosThDirComparedToNormal; }; #endif