// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // #ifndef G4BinaryLightIonReaction_h #define G4BinaryLightIonReaction_h 1 #include "G4BinaryCascade.hh" #include "G4PreCompoundModel.hh" #include "G4HadFinalState.hh" #include "G4ExcitationHandler.hh" class G4BinaryLightIonReaction : public G4HadronicInteraction { public: G4BinaryLightIonReaction(G4VPreCompoundModel* ptr = 0); virtual ~G4BinaryLightIonReaction(); G4HadFinalState* ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& theNucleus); inline void SetPrecompound(G4VPreCompoundModel* ptr); inline void SetDeExcitation(G4ExcitationHandler* ptr); virtual void ModelDescription(std::ostream&) const ; private: G4bool EnergyAndMomentumCorrector(G4ReactionProductVector* products, G4LorentzVector& TotalCollisionMom); G4bool SetLighterAsProjectile(G4LorentzVector & mom,const G4LorentzRotation & toBreit); G4ReactionProductVector * FuseNucleiAndPrompound(const G4LorentzVector & mom); G4ReactionProductVector * Interact(G4LorentzVector & mom, const G4LorentzRotation & ); G4double GetProjectileExcitation(); void DeExciteSpectatorNucleus(G4ReactionProductVector * spectators, G4ReactionProductVector * cascaders, G4double theStatisticalExEnergy, G4LorentzVector & momentum); G4LorentzVector SortResult(G4ReactionProductVector * result,G4ReactionProductVector * spectators,G4ReactionProductVector * cascaders); G4BinaryCascade* theModel; G4ExcitationHandler* theHandler; G4VPreCompoundModel* theProjectileFragmentation; G4HadFinalState theResult; G4int pA, pZ, tA, tZ,spectatorA,spectatorZ; G4Fancy3DNucleus * projectile3dNucleus, * target3dNucleus; G4FermiMomentum theFermi; G4LorentzVector pInitialState, pFinalState; G4bool debug_G4BinaryLightIonReactionResults; }; inline void G4BinaryLightIonReaction::SetPrecompound(G4VPreCompoundModel* ptr) { if(ptr) { theProjectileFragmentation = ptr; } theHandler = theProjectileFragmentation->GetExcitationHandler(); } inline void G4BinaryLightIonReaction::SetDeExcitation(G4ExcitationHandler* ptr) { theProjectileFragmentation->SetExcitationHandler(ptr); theHandler = ptr; } #endif