// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id$ // //--------------------------------------------------------------------- // // Geant4 header G4Fragment // // by V. Lara (May 1998) // // Modifications: // 03.05.2010 V.Ivanchenko General cleanup of inline functions: objects // are accessed by reference; remove double return // tolerance of excitation energy at modent it is computed; // safe computation of excitation for exotic fragments // 18.05.2010 V.Ivanchenko added member theGroundStateMass and inline // method which allowing to compute this value once and use // many times // 26.09.2010 V.Ivanchenko added number of protons, neutrons, proton holes // and neutron holes as members of the class and Get/Set methods; // removed not needed 'const'; removed old debug staff and unused // private methods; add comments and reorder methods for // better reading #ifndef G4Fragment_h #define G4Fragment_h 1 #include <vector> #include "globals.hh" #include "G4LorentzVector.hh" #include "G4ThreeVector.hh" #include "G4NucleiProperties.hh" #include "Randomize.hh" #include "G4Proton.hh" #include "G4Neutron.hh" #include "G4HadTmpUtil.hh" class G4ParticleDefinition; class G4Fragment; typedef std::vector<G4Fragment*> G4FragmentVector; class G4Fragment { public: // ============= CONSTRUCTORS ================== // Default constructor - obsolete G4Fragment(); // Destructor ~G4Fragment(); // Copy constructor G4Fragment(const G4Fragment &right); // A,Z and 4-momentum - main constructor for fragment G4Fragment(G4int A, G4int Z, const G4LorentzVector& aMomentum); // 4-momentum and pointer to G4particleDefinition (for gammas, e-) G4Fragment(const G4LorentzVector& aMomentum, G4ParticleDefinition* aParticleDefinition); // ============= OPERATORS ================== G4Fragment & operator=(const G4Fragment &right); G4bool operator==(const G4Fragment &right) const; G4bool operator!=(const G4Fragment &right) const; friend std::ostream& operator<<(std::ostream&, const G4Fragment*); friend std::ostream& operator<<(std::ostream&, const G4Fragment&); // ============= GENERAL METHODS ================== inline G4int GetZ_asInt() const; inline G4int GetA_asInt() const; inline void SetZandA_asInt(G4int Znew, G4int Anew); inline G4double GetExcitationEnergy() const; inline G4double GetGroundStateMass() const; inline G4double GetBindingEnergy() const; inline const G4LorentzVector& GetMomentum() const; inline void SetMomentum(const G4LorentzVector& value); inline const G4ThreeVector& GetAngularMomentum() const; inline void SetAngularMomentum(const G4ThreeVector& value); // computation of mass for any Z and A inline G4double ComputeGroundStateMass(G4int Z, G4int A) const; // obsolete methods inline G4double GetZ() const; inline G4double GetA() const; inline void SetZ(G4double value); inline void SetA(G4double value); // ============= METHODS FOR PRE-COMPOUND MODEL =============== inline G4int GetNumberOfExcitons() const; inline G4int GetNumberOfParticles() const; inline G4int GetNumberOfCharged() const; inline void SetNumberOfExcitedParticle(G4int valueTot, G4int valueP); inline G4int GetNumberOfHoles() const; inline G4int GetNumberOfChargedHoles() const; inline void SetNumberOfHoles(G4int valueTot, G4int valueP=0); // these methods will be removed in future inline void SetNumberOfParticles(G4int value); inline void SetNumberOfCharged(G4int value); // ============= METHODS FOR PHOTON EVAPORATION =============== inline G4int GetNumberOfElectrons() const; inline void SetNumberOfElectrons(G4int value); inline G4ParticleDefinition * GetParticleDefinition() const; inline void SetParticleDefinition(G4ParticleDefinition * p); inline G4double GetCreationTime() const; inline void SetCreationTime(G4double time); inline G4bool IsStable() const; inline void SetStable(G4bool val); // ============= PRIVATE METHODS ============================== private: void ExcitationEnergyWarning(); void NumberOfExitationWarning(const G4String&); inline void CalculateExcitationEnergy(); inline void CalculateGroundStateMass(); // ============= DATA MEMBERS ================== static G4int errCount; G4int theA; G4int theZ; G4double theExcitationEnergy; G4double theGroundStateMass; G4LorentzVector theMomentum; G4ThreeVector theAngularMomentum; // Exciton model data members G4int numberOfParticles; G4int numberOfCharged; G4int numberOfHoles; G4int numberOfChargedHoles; // Gamma evaporation data members G4int numberOfShellElectrons; G4ParticleDefinition * theParticleDefinition; G4double theCreationTime; G4bool isStable; }; // ============= INLINE METHOD IMPLEMENTATIONS =================== inline void G4Fragment::CalculateExcitationEnergy() { theExcitationEnergy = theMomentum.mag() - theGroundStateMass; if(theExcitationEnergy < 0.0) { ExcitationEnergyWarning(); } } inline void G4Fragment::CalculateGroundStateMass() { theGroundStateMass = G4NucleiProperties::GetNuclearMass(theA, theZ); } inline G4int G4Fragment::GetA_asInt() const { return theA; } inline G4int G4Fragment::GetZ_asInt() const { return theZ; } inline void G4Fragment::SetZandA_asInt(G4int Znew, G4int Anew) { theZ = Znew; theA = Anew; CalculateGroundStateMass(); } inline G4double G4Fragment::GetExcitationEnergy() const { return theExcitationEnergy; } inline G4double G4Fragment::GetGroundStateMass() const { return theGroundStateMass; } inline G4double G4Fragment::GetBindingEnergy() const { return (theA-theZ)*CLHEP::neutron_mass_c2 + theZ*CLHEP::proton_mass_c2 - theGroundStateMass; } inline const G4LorentzVector& G4Fragment::GetMomentum() const { return theMomentum; } inline void G4Fragment::SetMomentum(const G4LorentzVector& value) { theMomentum = value; CalculateExcitationEnergy(); } inline const G4ThreeVector& G4Fragment::GetAngularMomentum() const { return theAngularMomentum; } inline void G4Fragment::SetAngularMomentum(const G4ThreeVector& value) { theAngularMomentum = value; } inline G4double G4Fragment::ComputeGroundStateMass(G4int Z, G4int A) const { return G4NucleiProperties::GetNuclearMass(A, Z); } inline G4double G4Fragment::GetZ() const { return G4double(theZ); } inline G4double G4Fragment::GetA() const { return G4double(theA); } inline void G4Fragment::SetZ(const G4double value) { theZ = G4lrint(value); CalculateGroundStateMass(); } inline void G4Fragment::SetA(const G4double value) { theA = G4lrint(value); CalculateGroundStateMass(); } inline G4int G4Fragment::GetNumberOfExcitons() const { return numberOfParticles + numberOfHoles; } inline G4int G4Fragment::GetNumberOfParticles() const { return numberOfParticles; } inline G4int G4Fragment::GetNumberOfCharged() const { return numberOfCharged; } inline void G4Fragment::SetNumberOfExcitedParticle(G4int valueTot, G4int valueP) { numberOfParticles = valueTot; numberOfCharged = valueP; if(valueTot < valueP) { NumberOfExitationWarning("SetNumberOfExcitedParticle"); } } inline G4int G4Fragment::GetNumberOfHoles() const { return numberOfHoles; } inline G4int G4Fragment::GetNumberOfChargedHoles() const { return numberOfChargedHoles; } inline void G4Fragment::SetNumberOfHoles(G4int valueTot, G4int valueP) { numberOfHoles = valueTot; numberOfChargedHoles = valueP; if(valueTot < valueP) { NumberOfExitationWarning("SetNumberOfHoles"); } } inline void G4Fragment::SetNumberOfParticles(G4int value) { numberOfParticles = value; } inline void G4Fragment::SetNumberOfCharged(G4int value) { numberOfCharged = value; if(value > numberOfParticles) { NumberOfExitationWarning("SetNumberOfCharged"); } } inline G4int G4Fragment::GetNumberOfElectrons() const { return numberOfShellElectrons; } inline void G4Fragment::SetNumberOfElectrons(G4int value) { numberOfShellElectrons = value; } inline G4ParticleDefinition * G4Fragment::GetParticleDefinition(void) const { return theParticleDefinition; } inline void G4Fragment::SetParticleDefinition(G4ParticleDefinition * p) { theParticleDefinition = p; } inline G4double G4Fragment::GetCreationTime() const { return theCreationTime; } inline void G4Fragment::SetCreationTime(G4double time) { theCreationTime = time; } inline G4bool G4Fragment::IsStable() const { return isStable; } inline void G4Fragment::SetStable(G4bool val) { isStable = val; } #endif