// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // INCL++ intra-nuclear cascade model // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics // Davide Mancusi, CEA // Alain Boudard, CEA // Sylvie Leray, CEA // Joseph Cugnon, University of Liege // #define INCLXX_IN_GEANT4_MODE 1 #include "globals.hh" /** \file G4INCLCoulombNonRelativistic.hh * \brief Class for non-relativistic Coulomb distortion. * * \date 14 February 2011 * \author Davide Mancusi */ #ifndef G4INCLCOULOMBNONRELATIVISTIC_HH_ #define G4INCLCOULOMBNONRELATIVISTIC_HH_ #include "G4INCLParticle.hh" #include "G4INCLNucleus.hh" #include "G4INCLICoulomb.hh" #include "G4INCLCoulombNone.hh" #include "G4INCLGlobals.hh" namespace G4INCL { class CoulombNonRelativistic : public ICoulomb { public: CoulombNonRelativistic() {} virtual ~CoulombNonRelativistic() {} /** \brief Modify the momentum of the particle and position it on the * surface of the nucleus. * * This method performs non-relativistic distortion. * * \param p incoming particle * \param n distorting nucleus **/ ParticleEntryAvatar *bringToSurface(Particle * const p, Nucleus * const n) const; /** \brief Modify the momentum of the incoming cluster and position it on * the surface of the nucleus. * * This method performs non-relativistic distortion. The momenta of the * particles that compose the cluster are also distorted. * * \param c incoming cluster * \param n distorting nucleus **/ IAvatarList bringToSurface(Cluster * const c, Nucleus * const n) const; /** \brief Modify the momenta of the outgoing particles. * * This method performs non-relativistic distortion. * * \param pL list of outgoing particles * \param n distorting nucleus */ void distortOut(ParticleList const &pL, Nucleus const * const n) const; /** \brief Return the maximum impact parameter for Coulomb-distorted * trajectories. **/ G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const * const n) const; private: /// \brief Return the maximum impact parameter for Coulomb-distorted trajectories. G4double maxImpactParameterParticle(ParticleSpecies const &p, const G4double kinE, Nucleus const * const n) const; /// \brief Return the minimum distance of approach in a head-on collision (b=0). G4double minimumDistance(ParticleSpecies const &p, const G4double kineticEnergy, Nucleus const * const n) const { const G4double particleMass = ParticleTable::getTableSpeciesMass(p); const G4double nucleusMass = n->getTableMass(); const G4double reducedMass = particleMass*nucleusMass/(particleMass+nucleusMass); return ParticleTable::eSquared * p.theZ * n->getZ() * particleMass / (kineticEnergy * reducedMass); } /// \brief Return the minimum distance of approach in a head-on collision (b=0). G4double minimumDistance(Particle const * const p, Nucleus const * const n) const { return minimumDistance(p->getSpecies(), p->getKineticEnergy(), n); } /** \brief Perform Coulomb deviation * * Modifies the entrance angle of the particle and its impact parameter. * Can be applied to Particles and Clusters. * * The trajectory for an asymptotic impact parameter \f$b\f$ is * parametrised as follows: * \f[ * r(\theta) = \frac{(1-e^2)r_0/2}{1-e \sin(\theta-\theta_R/2)}, * \f] * here \f$e\f$ is the hyperbola eccentricity: * \f[ * e = \sqrt{1+4b^2/r_0^2}; * \f] * \f$\theta_R\f$ is the Rutherford scattering angle: * \f[ * \theta_R = \pi - 2\arctan\left(\frac{2b}{r_0}\right) * \f] * \f$\theta\f$ ranges from \f$\pi\f$ (initial state) to \f$\theta_R\f$ * (scattered particle) and \f$r_0\f$ is the minimum distance of approach * in a head-on collision (see the minimumDistance() method). * * \param p pointer to the Particle * \param n pointer to the Nucleus * \return false if below the barrier */ G4bool coulombDeviation(Particle * const p, Nucleus const * const n) const; /// \brief Internal CoulombNone slave to generate the avatars CoulombNone theCoulombNoneSlave; }; } #endif /* G4INCLCOULOMBNONRELATIVISTIC_HH_ */