// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // INCL++ intra-nuclear cascade model // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics // Davide Mancusi, CEA // Alain Boudard, CEA // Sylvie Leray, CEA // Joseph Cugnon, University of Liege // #define INCLXX_IN_GEANT4_MODE 1 #include "globals.hh" /** \file G4INCLEventInfo.hh * \brief Simple container for output of event results. * * Contains the results of an INCL cascade. * * \date 21 January 2011 * \author Davide Mancusi */ #ifndef G4INCLEVENTINFO_HH #define G4INCLEVENTINFO_HH 1 #include "G4INCLParticleType.hh" #ifdef INCL_ROOT_USE #include #endif #include #include #include namespace G4INCL { #ifndef INCL_ROOT_USE typedef G4int Int_t; typedef short Short_t; typedef G4float Float_t; typedef G4double Double_t; typedef G4bool Bool_t; #endif struct EventInfo { EventInfo() : projectileType(UnknownParticle), At(0), Zt(0), Ap(0), Zp(0), Ep(0.), impactParameter(0.0), nCollisions(0), stoppingTime(0.0), EBalance(0.0), pLongBalance(0.0), pTransBalance(0.0), nCascadeParticles(0), nRemnants(0), nParticles(0), transparent(true), forcedCompoundNucleus(false), nucleonAbsorption(false), pionAbsorption(false), nDecays(0), nBlockedCollisions(0), nBlockedDecays(0), effectiveImpactParameter(0.0), deltasInside(false), forcedDeltasInside(false), forcedDeltasOutside(false), clusterDecay(false), firstCollisionTime(0.), firstCollisionXSec(0.), nReflectionAvatars(0), nCollisionAvatars(0), nDecayAvatars(0), nUnmergedSpectators(0) { std::fill_n(ARem, maxSizeRemnants, 0); std::fill_n(ZRem, maxSizeRemnants, 0); std::fill_n(EStarRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(JRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(EKinRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(pxRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(pyRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(pzRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(thetaRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(phiRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(jxRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(jyRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(jzRem, maxSizeRemnants, ((Float_t)0.)); std::fill_n(A, maxSizeParticles, 0); std::fill_n(Z, maxSizeParticles, 0); std::fill_n(emissionTime, maxSizeParticles, ((Float_t)0.)); std::fill_n(EKin, maxSizeParticles, ((Float_t)0.)); std::fill_n(px, maxSizeParticles, ((Float_t)0.)); std::fill_n(py, maxSizeParticles, ((Float_t)0.)); std::fill_n(pz, maxSizeParticles, ((Float_t)0.)); std::fill_n(theta, maxSizeParticles, ((Float_t)0.)); std::fill_n(phi, maxSizeParticles, ((Float_t)0.)); std::fill_n(origin, maxSizeParticles, 0); }; /** \brief Number of the event */ static Int_t eventNumber; /** \brief Protjectile particle type */ ParticleType projectileType; /** \brief Mass number of the target nucleus */ Short_t At; /** \brief Charge number of the target nucleus */ Short_t Zt; /** \brief Mass number of the projectile nucleus */ Short_t Ap; /** \brief Charge number of the projectile nucleus */ Short_t Zp; /** \brief Projectile kinetic energy given as input */ Float_t Ep; /** \brief Impact parameter [fm] */ Float_t impactParameter; /** \brief Number of accepted two-body collisions */ Int_t nCollisions; /** \brief Cascade stopping time [fm/c] */ Float_t stoppingTime; /** \brief Energy-conservation balance [MeV] */ Float_t EBalance; /** \brief Longitudinal momentum-conservation balance [MeV/c] */ Float_t pLongBalance; /** \brief Transverse momentum-conservation balance [MeV/c] */ Float_t pTransBalance; /** \brief Number of cascade particles */ Short_t nCascadeParticles; /** \brief Number of remnants */ Int_t nRemnants; /** \brief Total number of emitted particles */ Int_t nParticles; /** \brief True if the event is transparent */ Bool_t transparent; /** \brief True if the event is a forced CN */ Bool_t forcedCompoundNucleus; /** \brief True if the event is absorption */ Bool_t nucleonAbsorption; /** \brief True if the event is absorption */ Bool_t pionAbsorption; /** \brief Number of accepted Delta decays */ Int_t nDecays; /** \brief Number of two-body collisions blocked by Pauli or CDPP */ Int_t nBlockedCollisions; /** \brief Number of decays blocked by Pauli or CDPP */ Int_t nBlockedDecays; /** \brief Number of reflection avatars */ /** \brief Effective (Coulomb-distorted) impact parameter [fm] */ Float_t effectiveImpactParameter; /// \brief Event involved deltas in the nucleus at the end of the cascade Bool_t deltasInside; /// \brief Event involved forced delta decays inside the nucleus Bool_t forcedDeltasInside; /// \brief Event involved forced delta decays outside the nucleus Bool_t forcedDeltasOutside; /// \brief Event involved cluster decay Bool_t clusterDecay; /** \brief Time of the first collision [fm/c] */ Float_t firstCollisionTime; /** \brief Cross section of the first collision (mb) */ Float_t firstCollisionXSec; Int_t nReflectionAvatars; /** \brief Number of collision avatars */ Int_t nCollisionAvatars; /** \brief Number of decay avatars */ Int_t nDecayAvatars; /// \brief Number of dynamical spectators that were merged back into the projectile remnant Int_t nUnmergedSpectators; /** \brief Maximum array size for remnants */ static const Short_t maxSizeRemnants = 10; /** \brief Remnant mass number */ Short_t ARem[maxSizeRemnants]; /** \brief Remnant charge number */ Short_t ZRem[maxSizeRemnants]; /** \brief Remnant excitation energy [MeV] */ Float_t EStarRem[maxSizeRemnants]; /** \brief Remnant spin [\f$\hbar\f$] */ Float_t JRem[maxSizeRemnants]; /** \brief Remnant kinetic energy [MeV] */ Float_t EKinRem[maxSizeRemnants]; /** \brief Remnant momentum, x component [MeV/c] */ Float_t pxRem[maxSizeRemnants]; /** \brief Remnant momentum, y component [MeV/c] */ Float_t pyRem[maxSizeRemnants]; /** \brief Remnant momentum, z component [MeV/c] */ Float_t pzRem[maxSizeRemnants]; /** \brief Remnant momentum polar angle [radians] */ Float_t thetaRem[maxSizeRemnants]; /** \brief Remnant momentum azimuthal angle [radians] */ Float_t phiRem[maxSizeRemnants]; /** \brief Remnant angular momentum, x component [hbar] */ Float_t jxRem[maxSizeRemnants]; /** \brief Remnant angular momentum, y component [hbar] */ Float_t jyRem[maxSizeRemnants]; /** \brief Remnant angular momentum, z component [hbar] */ Float_t jzRem[maxSizeRemnants]; /** \brief Maximum array size for emitted particles */ static const Short_t maxSizeParticles = 1000; /** \brief Particle mass number */ Short_t A[maxSizeParticles]; /** \brief Particle charge number */ Short_t Z[maxSizeParticles]; /** \brief Emission time [fm/c] */ Float_t emissionTime[maxSizeParticles]; /** \brief Particle kinetic energy [MeV] */ Float_t EKin[maxSizeParticles]; /** \brief Particle momentum, x component [MeV/c] */ Float_t px[maxSizeParticles]; /** \brief Particle momentum, y component [MeV/c] */ Float_t py[maxSizeParticles]; /** \brief Particle momentum, z component [MeV/c] */ Float_t pz[maxSizeParticles]; /** \brief Particle momentum polar angle [radians] */ Float_t theta[maxSizeParticles]; /** \brief Particle momentum azimuthal angle [radians] */ Float_t phi[maxSizeParticles]; /** \brief Origin of the particle * * Should be -1 for cascade particles, or the number of the remnant for * de-excitation particles. * */ Short_t origin[maxSizeParticles]; /** \brief History of the particle * * Condensed information about the de-excitation chain of a particle. For * cascade particles, it is just an empty string. For particles arising * from the de-excitation of a cascade remnant, it is a string of * characters. Each character represents one or more identical steps in * the de-excitation process. The currently defined possible character * values and their meanings are the following: * * e: evaporation product * E: evaporation residue * m: multifragmentation * a: light partner in asymmetric fission or IMF emission * A: heavy partner in asymmetric fission or IMF emission * f: light partner in fission * F: heavy partner in fission * s: saddle-to-scission emission * n: non-statistical emission (decay) */ std::vector history; #ifdef INCL_INVERSE_KINEMATICS /** \brief Particle kinetic energy, in inverse kinematics [MeV] */ Float_t EKinPrime[maxSizeParticles]; /** \brief Particle momentum, z component, in inverse kinematics [MeV/c] */ Float_t pzPrime[maxSizeParticles]; /** \brief Particle momentum polar angle, in inverse kinematics [radians] */ Float_t thetaPrime[maxSizeParticles]; #endif // INCL_INVERSE_KINEMATICS /** \brief Reset the EventInfo members */ void reset() { Ap = 0; Zp = 0; At = 0; Zt = 0; impactParameter = 0.0; effectiveImpactParameter = 0.0; stoppingTime = 0.0; EBalance = 0.0; pLongBalance = 0.0; pTransBalance = 0.0; nCollisions = 0; nBlockedCollisions = 0; nDecays = 0; nBlockedDecays= 0; nDecays = 0; nCascadeParticles = 0; nRemnants = 0; nParticles = 0; transparent = true; forcedCompoundNucleus = false; nucleonAbsorption = false; pionAbsorption = false; forcedDeltasInside = false; forcedDeltasOutside = false; deltasInside = false; clusterDecay = false; nUnmergedSpectators = 0; } #ifdef INCL_INVERSE_KINEMATICS void fillInverseKinematics(const Double_t gamma); #endif // INCL_INVERSE_KINEMATICS }; } #endif /* G4INCLEVENTINFO_HH */