// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // INCL++ intra-nuclear cascade model // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics // Davide Mancusi, CEA // Alain Boudard, CEA // Sylvie Leray, CEA // Joseph Cugnon, University of Liege // #define INCLXX_IN_GEANT4_MODE 1 #include "globals.hh" /* * IPropagationModel.hh * * \date 4 juin 2009 * \author Pekka Kaitaniemi */ #ifndef G4INCLIPropagationModel_hh #define G4INCLIPropagationModel_hh #include "G4INCLIAvatar.hh" #include "G4INCLNucleus.hh" namespace G4INCL { /** * Propagation model takes care of transporting the particles until something * interesting (i.e. an avatar) happens. This avatar is then returned back to the INCL * kernel for further processing. * * The propagation model idea abstracts the details of propagation. This allows us to * conveniently support multiple propagation models and to compare their results. Some * possible future propagation models are: straight line trajectories by using constant * time step and curved trajectories. */ class IPropagationModel { public: IPropagationModel() {} virtual ~IPropagationModel() {} /** * Set the nucleus for the propagation model. * * @param nucleus Pointer to the nucleus */ virtual void setNucleus(G4INCL::Nucleus *nucleus) = 0; /** * Get a pointer to the nucleus. * * @return G4INCL::Nuleus* */ virtual G4INCL::Nucleus* getNucleus() = 0; virtual G4double shoot(ParticleSpecies const projectileSpecies, const G4double kineticEnergy, const G4double impactParameter, const G4double phi) = 0; protected: virtual G4double shootParticle(ParticleType const t, const G4double kineticEnergy, const G4double impactParameter, const G4double phi) = 0; virtual G4double shootComposite(ParticleSpecies const s, const G4double kineticEnergy, const G4double impactParameter, const G4double phi) = 0; public: /** * Returns the current global time of the system. */ virtual G4double getCurrentTime() = 0; /** * Set new stopping time to the propagation. */ virtual void setStoppingTime(G4double) = 0; /** * Get the current stopping time. */ virtual G4double getStoppingTime() = 0; /** * Propagate the particles and get the next avatar. * * @return G4INCL::IAvatar the next avatar */ virtual G4INCL::IAvatar* propagate() = 0; }; } #endif