// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4VEmAdjointModel.hh 69844 2013-05-16 09:19:33Z gcosmo $ // ///////////////////////////////////////////////////////////////////////////////// // Module: G4VEMAdjointModel // Author: L. Desorgher // Organisation: SpaceIT GmbH // Contract: ESA contract 21435/08/NL/AT // Customer: ESA/ESTEC ///////////////////////////////////////////////////////////////////////////////// // // CHANGE HISTORY // -------------- // ChangeHistory: // 10 September 2009 Move to a virtual class. L. Desorgher // 1st April 2007 creation by L. Desorgher // //------------------------------------------------------------- // Documentation: // Base class for Adjoint EM model. It is based on the use of direct G4VEmModel. // #ifndef G4VEmAdjointModel_h #define G4VEmAdjointModel_h 1 #include "globals.hh" #include "G4DynamicParticle.hh" #include "G4ParticleDefinition.hh" #include "G4MaterialCutsCouple.hh" #include "G4Material.hh" #include "G4Element.hh" #include "G4ElementVector.hh" #include "Randomize.hh" #include "G4ParticleDefinition.hh" #include "G4VEmModel.hh" #include "G4Electron.hh" #include "G4Gamma.hh" #include "G4ProductionCutsTable.hh" class G4PhysicsTable; class G4Region; class G4VParticleChange; class G4ParticleChange; class G4Track; class G4AdjointCSMatrix; class G4VEmAdjointModel { public: // public methods G4VEmAdjointModel(const G4String& nam); virtual ~G4VEmAdjointModel(); //------------------------------------------------------------------------ // Virtual methods to be implemented for the sample secondaries concrete model //------------------------------------------------------------------------ //virtual void Initialise()=0; virtual void SampleSecondaries(const G4Track& aTrack, G4bool IsScatProjToProjCase, G4ParticleChange* fParticleChange)=0; //------------------------------------------------------------------------ // Methods for adjoint processes; may be overwritten if needed; //------------------------------------------------------------------------ virtual G4double AdjointCrossSection(const G4MaterialCutsCouple* aCouple, G4double primEnergy, G4bool IsScatProjToProjCase); virtual G4double GetAdjointCrossSection(const G4MaterialCutsCouple* aCouple, G4double primEnergy, G4bool IsScatProjToProjCase); virtual G4double DiffCrossSectionPerAtomPrimToSecond( G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction G4double kinEnergyProd, // kinetic energy of the secondary particle G4double Z, G4double A = 0.); virtual G4double DiffCrossSectionPerAtomPrimToScatPrim( G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction G4double kinEnergyScatProj, // kinetic energy of the primary particle after the interaction G4double Z, G4double A = 0.); virtual G4double DiffCrossSectionPerVolumePrimToSecond( const G4Material* aMaterial, G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction G4double kinEnergyProd // kinetic energy of the secondary particle ); virtual G4double DiffCrossSectionPerVolumePrimToScatPrim( const G4Material* aMaterial, G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction G4double kinEnergyScatProj // kinetic energy of the primary particle after the interaction ); //Energy limits of adjoint secondary //------------------ virtual G4double GetSecondAdjEnergyMaxForScatProjToProjCase(G4double PrimAdjEnergy); virtual G4double GetSecondAdjEnergyMinForScatProjToProjCase(G4double PrimAdjEnergy,G4double Tcut=0); virtual G4double GetSecondAdjEnergyMaxForProdToProjCase(G4double PrimAdjEnergy); virtual G4double GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy); //Other Methods //--------------- void DefineCurrentMaterial(const G4MaterialCutsCouple* couple); std::vector< std::vector< double>* > ComputeAdjointCrossSectionVectorPerAtomForSecond( G4double kinEnergyProd, G4double Z, G4double A = 0., G4int nbin_pro_decade=10 ); std::vector< std::vector< double>* > ComputeAdjointCrossSectionVectorPerAtomForScatProj( G4double kinEnergyProd, G4double Z, G4double A = 0., G4int nbin_pro_decade=10 ); std::vector< std::vector< double>* > ComputeAdjointCrossSectionVectorPerVolumeForSecond( G4Material* aMaterial, G4double kinEnergyProd, G4int nbin_pro_decade=10 ); std::vector< std::vector< double>* > ComputeAdjointCrossSectionVectorPerVolumeForScatProj( G4Material* aMaterial, G4double kinEnergyProd, G4int nbin_pro_decade=10 ); inline void SetCSMatrices(std::vector< G4AdjointCSMatrix* >* Vec1CSMatrix, std::vector< G4AdjointCSMatrix* >* Vec2CSMatrix){ pOnCSMatrixForProdToProjBackwardScattering = Vec1CSMatrix; pOnCSMatrixForScatProjToProjBackwardScattering = Vec2CSMatrix; }; inline G4ParticleDefinition* GetAdjointEquivalentOfDirectPrimaryParticleDefinition(){return theAdjEquivOfDirectPrimPartDef;} inline G4ParticleDefinition* GetAdjointEquivalentOfDirectSecondaryParticleDefinition(){return theAdjEquivOfDirectSecondPartDef;} inline G4double GetHighEnergyLimit(){return HighEnergyLimit;} inline G4double GetLowEnergyLimit(){return LowEnergyLimit;} void SetHighEnergyLimit(G4double aVal); void SetLowEnergyLimit(G4double aVal); inline void DefineDirectEMModel(G4VEmModel* aModel){theDirectEMModel = aModel;} void SetAdjointEquivalentOfDirectPrimaryParticleDefinition(G4ParticleDefinition* aPart); inline void SetAdjointEquivalentOfDirectSecondaryParticleDefinition(G4ParticleDefinition* aPart){ theAdjEquivOfDirectSecondPartDef =aPart; } inline void SetSecondPartOfSameType(G4bool aBool){second_part_of_same_type =aBool;} inline G4bool GetSecondPartOfSameType(){return second_part_of_same_type;} inline void SetUseMatrix(G4bool aBool) { UseMatrix = aBool;} inline void SetUseMatrixPerElement(G4bool aBool){ UseMatrixPerElement = aBool;} inline void SetUseOnlyOneMatrixForAllElements(G4bool aBool){ UseOnlyOneMatrixForAllElements = aBool;} inline void SetApplyCutInRange(G4bool aBool){ ApplyCutInRange = aBool;} inline G4bool GetUseMatrix() {return UseMatrix;} inline G4bool GetUseMatrixPerElement(){ return UseMatrixPerElement;} inline G4bool GetUseOnlyOneMatrixForAllElements(){ return UseOnlyOneMatrixForAllElements;} inline G4bool GetApplyCutInRange(){ return ApplyCutInRange;} inline G4String GetName(){ return name;} inline virtual void SetCSBiasingFactor(G4double aVal) {CS_biasing_factor = aVal;} protected: //Some of them can be overriden by daughter classes G4double DiffCrossSectionFunction1(G4double kinEnergyProj); G4double DiffCrossSectionFunction2(G4double kinEnergyProj); G4double DiffCrossSectionPerVolumeFunctionForIntegrationOverEkinProj(G4double EkinProd); //General methods to sample secondary energy //-------------------------------------- G4double SampleAdjSecEnergyFromCSMatrix(size_t MatrixIndex,G4double prim_energy,G4bool IsScatProjToProjCase); G4double SampleAdjSecEnergyFromCSMatrix(G4double prim_energy,G4bool IsScatProjToProjCase); void SelectCSMatrix(G4bool IsScatProjToProjCase); virtual G4double SampleAdjSecEnergyFromDiffCrossSectionPerAtom(G4double prim_energy,G4bool IsScatProjToProjCase); //Post Step weight correction //---------------------------- virtual void CorrectPostStepWeight(G4ParticleChange* fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase); protected: //attributes G4VEmModel* theDirectEMModel; G4VParticleChange* pParticleChange; //Name //----- const G4String name; //Needed for CS integration at the initialisation phase //----------------------------------------------------- G4int ASelectedNucleus; G4int ZSelectedNucleus; G4Material* SelectedMaterial; G4double kinEnergyProdForIntegration; G4double kinEnergyScatProjForIntegration; G4double kinEnergyProjForIntegration; //for the adjoint simulation we need for each element or material: //an adjoint CS Matrix //----------------------------- std::vector< G4AdjointCSMatrix* >* pOnCSMatrixForProdToProjBackwardScattering; std::vector< G4AdjointCSMatrix* >* pOnCSMatrixForScatProjToProjBackwardScattering; std::vector CS_Vs_ElementForScatProjToProjCase; std::vector CS_Vs_ElementForProdToProjCase; G4double lastCS; G4double lastAdjointCSForScatProjToProjCase; G4double lastAdjointCSForProdToProjCase; //particle definition //------------------ G4ParticleDefinition* theAdjEquivOfDirectPrimPartDef; G4ParticleDefinition* theAdjEquivOfDirectSecondPartDef; G4ParticleDefinition* theDirectPrimaryPartDef; G4bool second_part_of_same_type; //Prestep energy //------------- G4double preStepEnergy; //Current couple material //---------------------- G4Material* currentMaterial; G4MaterialCutsCouple* currentCouple; size_t currentMaterialIndex; size_t currentCoupleIndex; G4double currentTcutForDirectPrim; G4double currentTcutForDirectSecond; G4bool ApplyCutInRange; //For ions //--------- G4double mass_ratio_product; G4double mass_ratio_projectile; //Energy limits //------------- G4double HighEnergyLimit; G4double LowEnergyLimit; //Cross Section biasing factor //--------------------------- G4double CS_biasing_factor; //Type of Model with Matrix or not //-------------------------------- G4bool UseMatrix; G4bool UseMatrixPerElement; //other possibility is per Material G4bool UseOnlyOneMatrixForAllElements; //Index of Cross section matrices to be used //------------ size_t indexOfUsedCrossSectionMatrix; size_t model_index; }; #endif