Mice Module Documentation

This document documents the main functionality of the Mice Modules that control geometry and fields
of G4MICE. The document is divided into three parts. Part 1 gives an overview of the basic usage of
Mice Modules. Part 2 gives details on how to implement different geometry models in G4MICE. Part 3
gives details on how to implement different electromagnetic field models in G4AMICE.

How to Use this document

This document is best used in conjunction with the various examples than can be found in any
installation of GAMICE. If you are familiar with Mice Modules already, the first part can be omitted
and the latter two parts used as reference materials.

Any problems or omissions should be emailed to the document author, chris.rogers @stfc.ac.uk. I really
like to get feedback on what is annoying in the documentation, what doesn't make sense and what is
just wrong — so I encourage you to hassle me!

Table of Contents

Mice Module DOCUMENTALION.c...eitiiiiiaiieniieeieeet ettt ettt e e sttt esbe e s be e sttt e e sbbbeesaabeeeeenneee 1
HOW t0 USE thiS dOCUIMENL. ...c...eiiiiiiiiiiiiiiie ettt ettt e ettt e et e e sttt e e e e s eibbeeeeeeeaans 1
OVETVIEW ..ttt ettt et ettt e et e ettt e e ab bt e e ab bt e e abe e e ab et e ab e e e st e e s bt e e sabbeesabbeesabbeesabteeeasbbbeeeeens 4
CoNfIUIALION FIIE....ccouiiiiiiiiiie ettt e et e et e e et e e et e e ettt eeeeeesnnbbaeeeeeannns 4
SUDSTIULIONS. ..ttt ettt ettt e e bt e eab e bt e st eesbeeeabe e e s abteeesanbteeeeabneeens 5

B XPIESSIOMNS. ...ttt ettt ettt e e e e sttt e e ettt e eab e s bt e s bt e e s bt e e st e e e e e aarae e 5
EXPression SUDSHIUTIONS.ciivtiiiiiiiitie ettt ettt e et e et e e sabeeesabeeesaeeeenaeeee 5
MOAUIE FHIES. ...ttt sttt ettt st et e s e e setesae e e e 5
Volume and DIMENSIONS.cc.eeiutiiiiiiieiiteiteeteere ettt ettt ettt et e st sbeesaae e sareeeesaneeeeeanee 6
PrOPETEIES. ..eeeetieeetee ettt ettt e et e e ettt e s abeeesateeessaeeeasseeessaeanssaeensseeassseeansaeeenseeeensaeeanseeeeaannns 7
Child MOAUIES. ...ttt ettt et ettt et e bt e bt e s ab e e bt e eabe ettt e e s nbaeeeenneee 7
Module Hierarchy and GEANT4 Physical VOIUMES.........cccccooiiiiiiiiiiiiiiiicieecceceec e 8
A Sample Configuration FIle..........cocoiiiiiiiiiiiieee e 9
A Sample Child Module File..........coooiiiiiiiiiiieeceee ettt et e eeeaaae s 10
Geometry and TracKing PrOPETTIES.eeiuiiiiiiieriie et et e ettt e et e st esteeesbeeesibee e e ntrreeeesesannseeas 11
GENETAL PrOPEITIES.eeiiiiiiiiiiieite ettt ettt ettt et e et e e bbeeeabeeebbe e e e s e aasbreeeeeeas 11
SENSIIVE DEIECIOTS. . ..teiiiiiiiiie ettt ettt et et e e bt e ettt e s bt e e sabteesabbeeeeeeeennnes 11
Scintillating Fibre Detector (SCIF1).....ccc.uiiiiiiiiiiiiiieeie ettt e e e 12
CerenkoVv DeteCtor (CKOV) ..ottt eee e e e e eee e reeaeeeeeeeeeeenraaes 12
Time Of Flight Counter (TOF)........cooiiiii ettt 12
Special ViIrtual DEECTOTS.cccuiiieiiieeiiieeitiee ettt eeiteeetee e et e et e e teeessaeeesaeeesaeessseeesnsaeensseesensnssnees 12
VITtUAL DEIECTOTS. ..ccueveiuieiiiieiieeite ettt sttt et st et e sae e et e sateeneesaneeneeens 12
ENVEIOPE DIELECIOTS.eeiuiiiiiiiieiiie ettt ettt ettt e sttt e et e e et e e sbbeesabaeesabeeeeeeannns 13
Unconventional VOIUMES.coc.eiiiiiiiiiiiiieeetee ettt ettt ettt bt e e eneeee e 14
VOIUME WEAZE......eeeeiiieeeiieeiie ettt ettt e ettt e et e st e e st e e s sbee e sbeeessseeesseeeaseeeennsssneeeasannns 15
VOlIUmE POLYCOMNE. ..ottt et e 15
Volume QUAIUPOLE.cooiiiiiiiiiiie ettt et e 15
VOIUME MUIPOIL.....eoouiiieiiiieeiie ettt et e et e ettt e et e s bt e e sbbeesntbeesnsaeennseeennseeennns 16
VOolumE BOOIEAN.ooiiiiiiiiiiiii ettt sttt sttt e s e e 16
Repeating MOAUIES.coc.uiiiiiiiiie ettt ettt sbe e e st e et e e sabaeeeee s 17
Beam Definition and Beam ENVEIOPES......c..cocuiviiriiiiiiiiiiiiiiiiciecicneeeeeeeeee et 19
03171117 1<) OO OO OO UTPPORRUUPTPUPPPR 23
FREIA PrOPEITIES.eeeiuiiieeitie ettt ettt ettt e ettt e et e s bt e e st e e st e e sabteesabteeeeessnnsbaaeeeeannnns 25
FieldType CylndricalField.........cccuiiiiiiieiiiieeieecie ettt ettt e e et e e e e e e nnnaaaaee s 25
FieldType RectangularField...........c.coooiiiiiiiiiiicceece ettt ettt eeeees 25
FIeldTYPE SOIENONA.c..eiiiiiiiieiieeee ettt st s e e e e sanneees 25
FieldType Field AmalZamation.coocuiiiiiuiiiiiieiiiieeiie ettt ettt et e et e e 27
FieldType FastSOIENOId.ccccuuiiiiiiiiiiieeiie ettt ettt et e et e e st e e s baeesnbeeennseeaeans 28
PRhasing MOGEIS........coeuiiiiiiiieiiie ettt ettt e et e et e e et ee st eeentaeesasaaesnssbaaeeeseannssnaeeens 28
Tracking Stability Around REF CavItIes........cccceouiiiiiiiiiiiiiiiiiieeneeieeee et 29
FIEIATYPE PIIBOX....ceiiiiiiiiiieiieeeete ettt st ee e 29
FieldType REFICIAMAD.......ccccuiiiiiiiiiieeiieeee ettt sttt ettt et e et eeite e e e s e snnbnaeeeeeas 30

FIeldTyPpe MUILIPOIE.....ccoueiiiiiiiiie ettt sttt sttt s 31

FieldType CombinedFUNCHION.ciiiiiiiiiieeeiie ettt ettt et e et e e e eaaeessaeesbaeesabeeennseeaeens
ENAFICIATYPES. ...ttt et sttt et et e st e s e et e e sanees 33
FieldType MagnetiCFIEIAIMaPp.ccvioiiiiiiiieiceeceeeeese et s 34

gdmicetext Field Map FOIMAL.........occviiiiiiiiiiiiiie ettt ettt e e e e et eee e e e e 35

g4bl3dGrid Field Map FOTrmat...........c.covviiiiiiiiiiiieciieeie ettt ettt e e sveeesvee e e 35

Overview

Mice Modules are the objects that control the geometry and fields that are simulated in GAMICE. They
are used in conjunction with a datacard file, which provides global run control parameters. Mice
Modules are created by reading in a series of text files when G4AMICE applications are run. All Mice
Module files must be in a subdirectory of the directory defined by the environment variable $
{MICEFILES}).

This geometry information is used primarily by the Simulation application for tracking of particles
through magnetic fields. A few commands are specific to detector Reconstruction and accelerator beam
Optics applications.

The Mice Modules are created in a tree structure. Each module is a parent of any number of child
modules. Typically the parent module will describe a physical volume, and child modules will describe
physical volumes that sit inside the parent module. Modules cannot be used to describe volumes that do
not sit at least partially inside the volume if the parent module.

Each Mice Module file consists of a series of lines of text. Firstly the Module name is defined. This is
followed by an opening curly bracket, then the description of the module and the placement of any
child modules, and finally a closing curly bracket. Commands, curly brackets etc must be separated by
an end of line character.

Comments are indicated using either two slashes or an exclamation mark. Characters placed after a
comment on a line are ignored.

G4MICE operates in a right handed coordinate system (x,y,z). In the absence of any rotation, lengths
are considered to be extent along the z-axis, widths to be extent along the x-axis and heights to be
extent along the y-axis. Rotations (6, 0,, 0,) are defined as a rotation about the z-axis through 0,,
followed by a rotation about the y-axis through 0,, followed by a rotation about the x-axis through 6.

Configuration File

The Configuration file places the top level objects in MICE. The location of the file is controlled by the
datacard MiceModel. GAMICE looks for the configuration file in the first instance in the directory

${MICEFILES}/Models/Configuration/<MiceModel>

where ${ MICEFILES} is a user-defined environment variable. If G4AMICE fails to find the file it
searches the local directory.

The world volume is defined in the Configuration file and any children of the world volume are
referenced by the Configuration file. The Configuration file looks like:

Configuration <Configuration Nane>

{
Di mensi ons <x> <y> <z> <Units>
<Properties>
<Chil d Modul es>

}

<Configuration Name> is the name of the configuration. Typically the Configuration file name is

given by <Configuration Name>.dat. The world volume is always a rectangular box centred on (0,0,0)
with X, y, and z extent set by the Dimensions. Properties and Child Modules are described below and
added as in any Module.

Substitutions

It is possible to make keyword substitutions that substitutes all instances of <name> with <value> in all
Modules. The syntax is

Substituti on <name> <val ue>

<name> must start with a single $ sign. Substitutions must be defined in the Configuration file. Note
this 1s a direct text substitution in the MiceModules before the modules are parsed properly. So for
example,

Substitution $Sub SoneText
PropertyString Fiel dType $Sub
PropertyDoubl e $SubVal ue 10

would be parsed as G4MICE like
PropertyString FieldType SoneText
PropertyDoubl e SoneText Val ue 10

Expressions

The use of equations in properties of type double and Hep3Vector is also allowed in place of a single
value. So, for example,

PropertyDoubl e FieldStrength 0.5*2 T
would result in a FieldStrength property of 1 Tesla.

Expression Substitutions

Some additional variables can be defined in specific cases by G4MICE itself for substitution into
experssions, in which case they will start with @ symbol. For these variable substitutions, it is only
possible to make the substitution into expressions. So for example,

PropertyDoubl e Scal eFact or 2* @Repeat Nunber

Would substitute @RepeatNumber into the expression. @RepeatNumber is defined by G4AMICE
when repeating modules are used (see RepeatModule2, below). Note the following code is not valid

PropertyString Fil eName Fil e@Repeat Nunber //NOT VALID

This is because Expression Substitutions can only be used in an expression (i.e. an equation).

Module Files

Children of the top level Mice Module are defined by Modules. G4MICE will attempt to find a module
in an external file. The location of the file is controlled by the parent Module. Initially G4AMICE looks
in the directory

${MICEFILES}/Models/Modules/<Module>

If the Mice Module cannot be found, G4MICE searches the local directory. If the module file still
cannot be found, G4MICE will issue a warning and proceed.

The Module description is similar in structure to the Configuration file:
Modul e <Mbdul e Name>

{
Vol une <Vol ume Type>
Di mensi ons <Di mensi onl1> <Di nensi on2> <Di nensi on3> <Uni t s>
<Properties>
<Child Mdul es>
}

<Module Name> is the name of the module. Typically the Module file name is given by <Module
Name>.dat.

The definition of Volume, Dimensions, Properties and Child Modules are described below.

Volume and Dimensions

The volume described by the MiceModule can be one of several types. Replace <Volume Type> with
the appropriate volume below. Cylinder, Box and Tube define cylindrical and cuboidal volumes.
Polycone defines an arbitrary volume of rotation and is described in detail below. Wedge describes a
wedge with a triangular projection in the y-z plane and rectangular projections in x-z and x-y planes.
Quadrupole defines an aperture with four cylindrical pole tips.

In general, the physical volumes that scrape the beam are defined independently of the field maps. This
is the more versatile way to do things, but there are some pitfalls which such an implementation
introduces. For example, in hard-edged fields like pillboxes, tracking errors can be introduced when
G4MICE steps into the field region. This can be avoided by adding windows (probably made of
vacuum material) to force GEANT4 to stop tracking, make a small step over the field boundary, and
then restart tracking inside the field. However, such details are left for the user to implement.

Volume Dimensionl Dimension2 Dimension3

None No dimensions required. Note cannot define daughter Modules for this volume type.
Cylinder Radius Length in z Not used (leave blank)

Box Width in x Heightiny Length along z

Tube Inner Radius Outer Radius Length in z

Polycone No dimensions required. Volume defined from external file.

Wedge See documentation below.

Quadrupole No dimensions required. Dimensions defined from module properties.

Multipole No dimensions required. Dimensions defined from module properties.

Boolean No dimensions required. Dimensions defined from module properties.

Properties

Many of the features of G4AMICE that can be enabled in a module are described using properties. For
example, properties enable the user to define detectors and fields. Properties can be either of several
types: PropertyDouble, PropertyString, PropertyBool, PropertyHep3Vector or PropertyInt. A property
is declared via

<Property Type> <Property Name> <Val ue> <Units if appropriate>

Different properties that can be enabled for Mice Modules are described elsewhere in this document.
Properties of type PropertyDouble and PropertyHep3Vector can have units. Units are defined in the
CLHEP library. Units are case sensitive; G4MICE will return an error message if it fails to parse units.
Combinations of units such as T/m or N*m can be defined using '*' and '/* as appropriate. Properties
cannot be defined more than once within the same module.

Child Modules

Child Modules are defined with a position, rotation and scale factor. This places, and rotates, the child
volume and any fields present relative to the parent volume. Scale factor scales fields defined in the
child module and any of its children. Scale factors are recursively multiplicative; that is the field
generated by a child module will be scaled by the product of the scale factor defined in the parent
module and all of its parents.

The child module definition looks like:
Modul e <Mbdul e Fil e Nane>

{

Posi tion <X position> <y position> <z position> <Units>

Rot at i on <x rotation> <y rotation> <z rotation> <Units>

Scal eFact or <Val ue>

<Define vol une, dinensions and properties for this instance only>
}

<Module File Name> is defined relative to the folder ${ MICEFILES }/Models/Modules/. The position
and rotation default to O O O and the scale factor defaults to 1.

e Volume, Dimension and Properties of the child module can be defined at the level of the parent;
in this case these values will be used only for this instance of the module.

e If no file can be found, G4AMICE will press on regardless, attempting to build a geometry using
the information defined in the parent volume.

Module Hierarchy and GEANT4 Physical Volumes

IWrong!
A Blue J

G4MICE enables users to place arbitrary physical volumes in a GEANT4 geometry. The formatting of
G4MICE is such that users are encouraged to use the GEANT4 tree structure for placing physical
volumes. This is a double-edged sword, in that it provides users with a convenient interface for
building geometries, but it is not a terribly safe interface.

Consider the cartoon of physical volumes shown above. Here there is a blue volume sitting inside a red
volume sitting inside the black world volume. For the volumes to be represented properly, the module
that represents the blue volume MUST be a child of the module that represents the red volume. The
module that represents the red volume MUST, in turn, be a child of the module that represents the
black volume, in this case the Configuration file.

What would happen if we placed the blue volume directly into the Black volume, i.e. the Configuration
file? GEANT4 would silently ignore the blue volume, or the red volume, depending on the order in
which they are added into the GEANT4 geometry. What would happen if we placed the blue volume
overlapping the red and black volumes? The behaviour of GEANT#4 is not clear in this case.

e Never allow a volume to overlap any part of another volume that is not it's direct parent.

It is possible to check for overlaps by setting the datacard CheckVolumeOverlaps to 1.

A Sample Configuration File
Below is listed a sample configuration file, which is likely to be included in the file
ExampleConfiguration.dat; the actual name is specified by the datacard MiceModel.
Confi gurati on Exanpl eConfiguration
{
Di nensi ons 1500. 0 1000.0 5000.0 cm
PropertyString Material AIR
Substitution $MyRedCol our 0.75
Modul e BeanLi ne/ Sol Mag. dat
{
Position 140.0 0.0 -2175.0 cm
Rotation 0.0 30.0 0.0 degree
Scal eFactor 1.

}
Modul e Beanli ne/ BendMag. dat

{
Position 0.0 0.0 -1935.0 cm
Rotation 0.0 15.0 0.0 degree
Scal eFactor 1.

}
Modul e NoFi | e_Box1

{

Vol ume Box

Dinension 1.0 1.0 1.0

Position 0.0 0.0 200.0 cm

Rotation 0.0 15.0 0.0 degree

PropertyString Material Galactic

Pr oper t yDoubl e RedCol our $MyRedCol our

Modul e NoFi | e_Box2

{
Vol ume Box
Dimension 0.5 0.5 0.5*3 m//z length = 0.5*3 = 1.5 m
Rotation 0.0 15.0 0.0 degree //Rotation relative to parent
PropertyString Material Galactic
Pr oper t yDoubl e RedCol our $MyRedCol our

A Sample Child Module File

Below is listed a sample module file, which is likely to be included in the file SolMag.dat; the actual
location is specified by the module or configuration that calls FCoil. The module contains a number of
properties that define the field.

Modul e Sol Mag

{
Vol ume Tube
Di nensi ons 263.0 347.0 210.0 mm
PropertyString Material Al
PropertyDoubl e Bl ueCol our 0.75
Pr opertyDoubl e G- eenCol our 0.75

/[/field

PropertyString Fiel dType Sol enoi d
PropertyString Fil eNane f ocus. dat
PropertyDoubl e CurrentDensity 1.
PropertyDoubl e Length 210. mm
PropertyDoubl e Thi ckness 84. mm
PropertyDoubl e | nner Radi us 263. mm

Geometry and Tracking Properties

Properties for various aspects of the physical and engineering model of the simulation are described
below. This includes properties for sensitive detectors.

General Properties

There are a number of properties that are applicable to any MiceModule.

Property Type |Description

Material string | The material that the volume is made up from

Invisible bool Set to 1 to make the object invisible in visualisation, or 0 to make the
object visible.

RedColour double | Alter the colour of objects as they are visualised

GreenColour double

BlueColour double

G4StepMax double | The maximum step length that Geant4 can make in the volume.
Inherits values from the parent volumes.

G4TrackMax double | The maximum track length and particle time of a track. Tracks outside

G4ATimeMax double | this bound are killed. Inherits values from the parent volumes.

G4KinMin double | The minimum kinetic energy of a track. Tracks outside this bound are
killed. Inherits values from the parent volumes.

SensitiveDetector string | Set to the type of sensitive detector required. Possible sensitive

detectors are TOF, SciFi, CKOV, SpecialVirtual, Virtual, Envelope or
EMCAL.

Sensitive Detectors

A sensitive detector (one in which hits are recorded) can be defined by including the SensitiveDetector
property. When a volume is set to be a sensitive detector G4AMICE will automatically record tracks
entering, exiting and crossing the volume. Details such as the energy deposited by the track are
sometimes also recorded in order to enable subsequent modelling of the detector response.

Some sensitive detectors use extra properties.

Scintillating Fibre Detector (SciFi)

Cerenkov Detector (CKOV)

Time Of Flight Counter (TOF)

Special Virtual Detectors

Special virtual detectors are used to monitor tracking through a particular physical volume. Normally
particle tracks are written in the global coordinate system, although an alternate coordinate system can
be defined. Additional properties can be used to parameterise special virtual detectors.

Property Type |Description
ZSegmentation int Set the number of segments in the detector in Z, R or ¢. Defaults to 1.
PhiSegmentation int
RSegmentation int
SteppingThrough bool Set to true to record tracks stepping through, into, out of or across the
SteppingInto bool volume. Defaults to true.
SteppingOutOf bool
SteppingAcross bool
Station int Define an integer that is written to the output file to identify the
station. Defaults to a unique integer identifier chosen by G4MICE,
which will be different each time the same Special Virtual is placed.
LocalRefRotation Hep3 |If set, record hits relative to a reference rotation in the coordinate
Vector |system of the SpecialVirtual detector.
GlobalRefRotation |Hep3 |If set, record hits relative to a reference rotation in the coordinate
Vector |system of the Configuration.
LocalRefPosition Hep3 |If set, record hits relative to a reference position in the coordinate
Vector |system of the SpecialVirtual detector.
GlobalRefPosition |Hep3 |If set, record hits relative to a reference position in the coordinate
Vector |system of the Configuration.

Virtual Detectors

Virtual detectors are used to extract all particle data at a particular plane, irrespective of geometry.
Virtual detectors do not need to have a physical volume. The plane can be a plane in z, time, proper
time, or a physical plane with some arbitrary rotation and translation.

Property

Type

Description

IndependentVariable

String

e If set to ¢, particle data will be written for particles at the time
defined by the PlaneTime property.
e If set to rau, particle data will be written for particles at the

Property

Type

Description

proper time defined by the PlaneTime property.

e If set to z, particle data will be written for particles crossing the
module's z-position.

e If set to u, particle data will be written for particles crossing a
plane extending in x and y.

PlaneTime

Double

If IndependentVariable is t or tau, particle data will be written out at
this time. Mandatory if IndependentVariable is t or tau.

RadialExtent

Double

If set, particles outside this radius in the plane of the detector will not
be recorded by the Virtual detector.

GlobalCoordinates

Bool

If set to 0O, particle data is written in the coordinate system of the
module. Otherwise particle data is written in global coordinates.

MultiplePasses

String

Set how the VirtualPlane handles particles that pass through more
than once. If set to Ignore, particles will be ignored on second and
subsequent passes. If set to SameStation, particles will be registered
with the same station number. If set to NewStation, particles will be
registered with a NewStation number given by the (fotal number of
stations) + (this plane's station number), i.e. a new station number
appropriate for a ring geometry.

AllowBackwards

Bool

Set to true to record backwards-going particles. Default is false.

Envelope Detectors

Envelope detectors are a type of Virtual detector that take all of the properties listed under virtual
detectors, above. In addition, in the optics application they can be used to interact with the beam
envelope in a special way. The following properties can be defined for Envelope Detectors in addition
to the properties specified above for virtual detectors.

The The EnvelopeOut properties are used to make output from the envelope for use in the Optics

optimiser.

Property

Type

Description

EnvelopeOutl_Name

String

Defines the variable name that can be used as an expression
substitution at the end of each iteration, typically substituted into the
Score parameters in the optimiser (see optimiser, below).

EnvelopeOutl_Type

String

Defines the type of variable that will be calculated for the substitution.
Options are

*Mean

«Covariance

«Standard_Deviation

«Correlation

«Bunch_Parameter

EnvelopeOutl_Varia
ble

String

Defines the variable that will be calculated for the substitution.
Options are for Bunch_Parameter

Property

Type

Description

cemit_6d : 6d emittance

cemit_4d: 4d emittance (in x-y space)

cemit_t: 2d emittance (in time space)

cemit_x: 2d emittance (in x space)

cemit_y: 2d emittance (in y space)

obeta_4d: 4d transverse beta function

obeta_t: 2d longitudinal beta function

obeta_x: 2d beta function (in(x space)

obeta_y: 2d beta function (in y space)

calpha_4d: 4d transverse alpha function

calpha_t: 2d longitudinal alpha function

calpha_x: 2d alpha function (in(x space)

calpha_y: 2d alpha function (in y space)

cgamma_4d: 4d transverse gamma function

ogamma_t: 2d longitudinal gamma function

cgamma_x: 2d gamma function (in(x space)

cgamma_y: 2d gamma function (in y space)

odisp_x: x-dispersion

odisp_y: y-dispersion

o[twiddle: normalised angular momentum

olkin: standard angular momentum

For Mean, Standard Deviation, Covariance and Correlation, variables
should be selected from the options

X: X-position

*y:y-position

*f: time

*pX: X-momentum

*py. y-momentum

«E: energy

For Mean, a single variable should be selected and value
corresponding to the reference trajectory will be returned.
For Standard_Deviation, a single variable should be selected and the 1
sigma beam size will be returned.

For Covariance and Correlation, two variables should be selected
separated by a comma.

Unconventional Volumes

It is possible to define a number of volumes that use properties rather than the Dimensions keyword to

define the volume size.

Volume Wedge

-
-

z dimeTsion

A\

e

g
y dimension X dimension

A wedge is a triangular prism as shown in the diagram. Here the blue line extends along the positive z-
axis and the red line extends along the x-axis.

Property Type |Description
Dimensions Hep3 |1.Width of the prism in x
Vector |2.0pen end height of the prism in y

3.Length of the prism in z

Volume Polycone

A polycone is a volume of rotation, defined by a number of points in r and z. The volume is found by a
linear interpolation of the points.

Property Type |Description

PolyconeType string | Set to Fill to define a solid volume of rotation. Set to Cone to define a
shell volume of rotation with an inner and outer surface.

FieldMapMode string | The name of the file that contains the polycone data.

Volume Quadrupole

Quadrupoles are defined by an empty cylinder with four further cylinders that are approximations to

pole tips.

Property Type |Description

PhysicalLength double | The length of the quadrupole container.

QuadRadius double |The distance from the quad centre to the outside of the quad.
PoleTipRadius double |The distance from the quad centre to the pole tip.

Property Type |Description

CoilRadius double

CoilHalfWidth double

BeamlineMaterial string | The material from which the beamline volume is made.

QuadMaterial string | The material from which the quadrupole volume is made.

Volume Multipole

Multipoles are defined by an empty box with an arbitrary number of cylinders that are approximations
to pole tips. Poles are placed around the centre of the box with n-fold symmetry. Multipoles can be
curved, in which case poles cannot be defined — only a curved rectangular aperture will be present.

Property Type |Description

ApertureCurvature double |Radius of curvature of the multipole aperture. For now curved
apertures cannot have poles. Set to O for a straight aperture.

AperturelLength double |Length of the multipole aperture.
NumberOfPoles int Number of poles.
PoleCentreRadius double |The distance from the centre of the aperture to the centre of the

cylindrical pole.

PoleTipRadius double |The distance from the centre of the aperture to the tip of the
cylindrical pole.

AperturelnnerHeight |double |The inner full height of the aperture.

AperturelnnerWidth ~ |double |The inner full width of the aperture.

AppertureOuterHeigh |double |The outer full height of the aperture.
t

ApertureOuterWidth |double |The outer full width of the aperture.

Volume Boolean

Boolean volumes enable several volumes to be combined to make very sophisticated shapes from a
number of elements. Elements can be combined either by union, intersection or subtraction operations.
A union creates a volume that is the sum of two elements; an intersection creates a volume that covers
the region where two volumes intersect each other; and a subtraction creates a volume that contains all
of one volume except the region that another volume sits in.

Boolean volumes combine volumes modelled by other MiceModules (submodules), controlled using
the properties listed below. Only the volume shape is used; position, rotation and field models etc are
ignored. Materials, colours and other relevant properties are all taken only from the Boolean Volume's
properties.

Note that unlike in other parts of G4AMICE, submodules for use in Booleans (BaseModule,
BooleanModulel, BooleanModule? ...) must be defined in a separate file, either defined in
$MICEFILES/Models/Modules or in the working directory.

Also note that visualisation of boolean volumes is rather unreliable. Unfortunately this is a feature of
GEANT4. An alternative technique is to use special virtual detectors to examine hits in boolean

volumes.

Property Type |Description

BaseModule string | Name of the physical volume that the BooleanVolume is based on.
This volume will be placed at (0,0,0) with no rotation, and all
subsequent volumes will be added, subtracted or intersected with this
one.

BooleanModulel string | The first module to add. G4MICE will search for the MiceModule

with path SMICEFILES/Models/Modules/<BooleanModule1>.

BooleanModulelType | string

The type of boolean operation to apply, either “Union”,
“Intersection” or “Subtraction”.

BooleanModulelPos |Hep3

The position of the new volume with respect to the Base volume.

BooleanModuleNType | string

BooleanModuleNPos |Hep3
Vector

BooleanModuleNRot |Hep3
Vector

Vector

BooleanModulelRot |Hep3 | The rotation of the new volume with respect to the Base volume.
Vector

BooleanModuleN string | Add extra modules as required. Replace “N” with the module

number. N must be a continuous series incrementing by 1 for each
new module. Note that the order in which modules are added is
important — (A-B) U C is different to A-(B U C).

Repeating Modules

It is possible to set up a repeating structure for e.g. a repeating magnet lattice. The RepeatModule
property enables the user to specify that a particular module will be repeated a number of times, with
all properties passed onto the child module, but with a new position, orientation and scale factor. Each
successive repetition will be given a translation and a rotation relative to the coordinate system of the
previous repetition, enabling the construction of circular and straight accelerator lattices. Additionally,
successive repetitions can have fields scaled relative to previous repetitions, enabling for example

alternating lattices.

Property Type

Description

RepeatModule bool

Set to 1 to enable repeats in this module.

NumberOfRepeats int

Number of times the module will be repeated in addition to the initial
placement.

RepeatTranslation Hep3
Vector

Translation applied to successive repeats, applied in the coordinate
system of the previous repetition.

RepeatRotation Hep3
Vector

Rotation applied to successive repeats, applied in the coordinate
system of the previous repetition.

Property Type

Description

RepeatScaleFactor double

ScaleFactor applied to successive repeats, applied relative to

previous repetition's scale factor.

The RepeatModule2 property also enables the user to specify that a particular module will be repeated
a number of times. In this case, G4AMICE will set a substitution variable @RepeatNumber that holds an
index between 0 and NumberOfRepeats. This can be used in an expression in to provide a versatile
interface between user and accelerator lattice.

Property Type

Description

RepeatModule2 bool

Set to 1 to enable repeats in this module.

NumberOfRepeats int

Number of times the module will be repeated in addition to the initial
placement.

Beam Definition and Beam Envelopes

The Optics application can be used to track a trajectory and associated beam envelope through the
accelerator structure. Optics works by finding the Jacobian around some arbitrary trajectory using a
numerical differentiation. This is used to define a linear mapping about this trajectory, which can then
be used to transport the beam envelope.

The Simulation application can be used to generate a random particle beam with a Gaussian
distribution and RMS parameters defined in the same way as the Optics beam envelope. Alternatively,
pencil beams and beams from some input file can also be defined here.

A beam envelope is defined by a reference trajectory and a beam ellipse. The reference trajectory takes
its position and direction from the position and rotation of the module. No rotation builds a reference
trajectory along the z-axis. The magnitude of the momentum and the initial time of the reference
trajectory is defined by properties. RF cavities are phased using the reference trajectory defined here.

The beam ellipse is represented by a matrix, which can either be set using
e Twiss-style parameters in (x,px),(y,py) and (t,E) spaces.

e Twiss-style parameters in (t,E) space and Penn-style parameters in a cylindrically symmetric
(X,px,y,py) space.
e A 6x6 beam ellipse matrix where the ellipse equation is given by X. T) M X = 1.

The Penn ellipse matrix is given by

eLmC% —€e,mcu; 0 0 0 0
D D, D D,
emey,p ZV(E) ZV(E) V(E) —LV(E)
M= rmc —€;MCa; 0 —eTmc(ﬂﬁT Z—1)
BZ
ErMCyrpP eTmC(%BT?_L) 0
€ TTICﬁ —€-MCX
T p T T
€E.MCyrp

Here L is a normalised canonical angular momentum, ¢ is the reference particle charge, B, is the
nominal on-axis magnetic field, p is the reference momentum, m is the reference mass, €r is the
transverse emittance, Br and o are the transverse Twiss-like functions, €, is the longitudinal emittance
and B, and oy, are the longitudinal Twiss-like functions. Additionally Dy, Dy, D', D'y are the dispersions
and their derivatives with respect to z and V(E) is the variance of energy (given by the (2,2) term in the
matrix above).

The Twiss ellipse matrix is given by

eme% —e;,mcoy, 0 0 0 0
D, D D.

emey,p 2V(E) ZV(E) 2V(E) ZV(E)

M= e,mCc— —emca, 0 0

e.mcy,p 0 0

By

e,mc— —e,Mmcu,
e,mcy,p

Here p is the reference momentum, m is the reference mass, €;, B; and a; are the emittances and Twiss
functions in the (t,E), (x,px) and (y,py) planes respectively, Dy, Dy, D', D'y are the dispersions and their
derivatives with respect to z and V(E) is the variance of energy (given by the (2,2) term in the matrix
above).

Property Type |Description

EnvelopeType string |Set to TrackingDerivative to evolve a beam envelope in the Optics
application.

BeamType string | Set to Random to generate a beam using the parameters below for the
Simulation application. Set to Pencil to generate a pencil beam (with
no random distribution). Set to ICOOL, Turtle,
G4MICE_PrimaryGenHit or G4BeamLine to use a beam file.

Pid int The particle ID of particles in the envelope or beam.

Longitudinal string | Set the longitudinal variable used to define the reference trajectory

Variable momentum. Options are Energy, KineticEnergy, Momentum and
ZMomentum.

Energy double | Define the value of the longitudinal variable used to calculate the

KineticEnergy double | mean momentum and energy. The usual relationship E*+p*c*=m’c*
applies. Kinetic energy Ey is related to energy E by E,+m=E.

Momentum double

ZMomentum double

EllipseDefinition |string |Define the beam ellipse that will be used in calculating the evolution

of the Envelope, or used to generate a beam for BeamType Random.
Options are Twiss, Penn and Matrix.

The following properties are only used if EllipseDefinition is set to Twiss

Emittance_X double |Emittance in each 2d subspace, (X,px), (y,py) and (t,E).
Emittance_Y double

Emittance_L double

Beta_X double | Twiss B function in each 2d subspace, (x,px), (y,py) and (t,E).
Beta_Y double

Beta_L double

Alpha_X double | Twiss o function in each 2d subspace, (x,px), (y,py) and (t,E).
Alpha_Y double

Alpha_L double

The following properties are only used if EllipseDefinition is set to Matrix

Covariance(t,t)

double

Covariance(t,E) double
Covariance(t,x) double

double
Covariance(Py,Py) |double

Set the 6x6 matrix that will be used in the to define the beam ellipse.
Covariances should be covariances of elements of the matrix
(x,Px,y,Py,t.E).

This must be a positive definite matrix, i.e. determinant > 0. Note that
this means that at least the 6 terms on the diagonal must be defined.
Other terms default to O.

The following properties are only used if EllipseDefinition is set to Penn

Emittance T

double

Transverse emittance for the 4d (x,px,y,py) subspace.

Property Type |Description

Emittance L double | Longitudinal emittance for the 2d (t,E) subspace.

Beta_ T double | Transverse beta for the 4d (x,px,y,py) subspace.

Beta_L double | Longitudinal beta for the 2d (t,E) subspace.

Alpha_T double | Transverse alpha for the 4d (x,px,y,py) subspace.

Alpha_L double | Longitudinal alpha for the 2d (t,E) subspace.

Normalised double | Normalised angular momentum for the transverse phase space.
AngularMomentu

Bz double | Nominal magnetic field on the reference particle.

The following properties are used if EllipseDefinition is set to Penn or Twiss

Dispersion_X

double

Dispersion in x (x-energy correlation).

Dispersion_Y

double

Dispersion in y (y-energy correlation).

DispersionPrime_ |double | D' in x (Px-energy correlation).
X
DispersionPrime_ |double |D'in y (Py-energy correlation).
Y

The following properties are only relevant for generating a beam envelope

RootOutput string | Output file name for writing output beam envelope in ROOT binary
format.

LongTextOutput | string |Output file name for writing output beam envelope in string format.

ShortTextOutput | string |Output file name for writing output beam envelope in string format.
This abbreviated output omits some of the fields that are present in
LongTextOutput files.

BeamOutput string |If a BeamType is defined, this property controls the file name to
which beam data is written.

Delta_t double | Offset in time used for calculating numerical derivatives. Default is
0.1 ns.

Delta_E double | Offset in energy used for calculating numerical derivatives. Default is
1 MeV.

Delta_x double | Offset in x position used for calculating numerical derivatives. Default
is 1 mm.

Delta_Px double | Offset in x momentum used for calculating numerical derivatives.
Default is 1 MeV/c.

Delta_y double | Offset in y position used for calculating numerical derivatives. Default
is 1 mm.

Delta_Py double | Offset in y momentum used for calculating numerical derivatives.

Default is 1 MeV/c.

Property Type |Description

Max_Delta_t double | Maximum offsets when polyfit algorithm is used. In some cases the

Max Delta E double offset can keep increasing without limit unless these maximum offsets
— — are defined. Default is no limit.

Max_Delta_x double

Max_Delta_Px double

Max_Delta_y double

Max_Delta_Py double

The following properties are only relevant for generating a particle beam

UseAsReference |Bool |If set to true and the datacard FirstParticlelsReference is set to 0, the
first event in the Module will be used as the reference particle that sets
cavity phases. This particle will then have the mean trajectory (i.e. no
gaussian distribution).

BeamFile string |If the BeamType is ICOOL, Turtle, GAMICE_PrimaryGenHit or
G4BeamLine, this property defines the name of the file containing
tracks for G4AMICE.

NumberOfEvents |int Set the maximum number of events to take from this module. If other

modules are defined, G4AMICE will iterate over the modules until it
the datacard numEvts is reached or all modules have been run to
NumberOfEvents. Default is for GAMICE to keep tracking from the
first module it finds until numEvts is reached.

Optimiser

It is possible to define an optimiser for use in the Optics application. The optimiser enables the user to
vary parameters in the MiceModule file and try to find some optimum setting. For each value of the
parameters, G4MICE Optics will calculate a score; the optimiser attempts to find a minimum value for
this score.

Property Type |Description

Optimiser string | Controls the function used for optimising. For now Minuit is the only
available option.

Algorithm string | For Minuit optimiser, controls the Minuit algorithm used. In general
Simplex is a good option to use here. An alternative is Migrad. See
Minuit documentation (for example at
http://root.cern.ch/root/html/TMinuit.html) for further information.
Minuit attempts to minimise the score function defined by the Score
properties.

NumberOfTries int Maximum number of iterations G4MICE will make in order to find
the optimum value.

StartError double |Guess at the initial error in the score.

EndError double |Required final error in the score for the optimisation to converge

Property Type |Description
successfully.

RebuildSimulation 'bool | Set to False to tell G4MICE not to rebuild the simulation on each
iteration. This should be used to speed up the optimiser when a
parameter is used that does not change the field maps. Default is true.

Parameterl_Start |double |Seed value for the parameter, that is used in the first iteration.

Parameterl_Name |string |Name of the parameter. This name is used as an expression
substitution variable elsewhere in the code and should start with @.
See Expression Substitutions above for details on usage of expression
substitutions.

Parameter]_Delta |double |Estimated initial error on the parameter. Default is 1.

Parameter]_Fixed 'bool |Set to true to fix the parameter (so that it is excluded from the
optimisation). Default is false.

Parameter]_Min | double | If required, set to the minimum value that the parameter can hold.

Parameter] _Max | double |If required, set to the maximum value that the parameter can hold.

Parameter2_Start Define an arbitrary number of parameters. Parameters must be
numbered consecutively, and each parameter must have at least the
start value and name defined.

Parameter2_Max

Scorel double | The optimiser will attempt to optimise against a score that is

Score? calculated by summing the Scorel, Score2,... parameters on each

iteration.

Field Properties

Invoke a field using PropertyString FieldType <fieldtype>. The field will be placed, normally centred
on the MiceModule Position and with the appropriate Rotation. Further options for each field type are
specified below, and relevant datacards are also given. If a fieldtype is specified some other properties
must also be specified, while others may be optional, usually taking their value from defaults specified
in the datacards. Only one fieldtype can be specified per module. However, fields from multiple
modules are superimposed, each transformed according to the MiceModule specification. This enables
many different field configurations to be simulated using G4MICE.

To use BeamTools fields, datacard FieldMode Full must be set. This is the default.

Property Type |Description

FieldType string | Set the field type of the MiceModule.

FieldType CylindricalField

Sets a constant magnetic field in a cylindrical region symmetric about the z-axis of the module.

Property Type |Description

ConstantField Hep3 | The magnetic field that will be placed in the region.
Vector

Length double | The physical extent of the region.

Radius double

FieldType RectangularField

Sets a constant magnetic field in a rectangular region.

Property Type |Description

ConstantField Hep3 | The magnetic field that will be placed in the region.
Vector

Length double | The physical extent of the region.

Width double

Height double

FieldType Solenoid

G4MICE simulates solenoids using a series of current sheets. The field for each solenoid is written to a
field map on a rectangular grid and can then be reused. The field from each current sheet is calculated
using the formula for current sheets detailed in MUCOOL Note 281, Modeling solenoids using coil,
sheet and block conductors.

Property Type |Description

FileName string | Read or write solenoid data to the filename. If different modules have

Property Type |Description
the same filename, G4MICE assumes they are the same.

FieldMapMode string | If set to Read, G4AMICE will attempt to read existing data from the
FileName. If set to Write, G4AMICE will generate new data and write it
to the FileName. If set to Analytic, G4AMICE will calculate fields
directly without interpolating. If set to WriteDynamic acts as in Write
except the grid extent and grid spacing at each point is chosen
dynamically to some tolerance defined in the FieldTolerance property.
Takes default from datacard SolDataFiles (Write).

Length double |Coil physical parameters. Only used in Write/Analytic mode where

Thickness double they are mandatory.

InnerRadius double

CurrentDensity double

ZExtentFactor double |Field map extends to length + ZExtentFactor*innerRadius in Write
mode. Takes default from datacard SolzMapExtendFactor (10.). Map
size is chosen dynamically in WriteDynamic mode.

RExtentFactor double |Field map extends to radius RExtentFactor*innerRadius in Write
mode. Takes default from datacard SolrMapExtendFactor (2.018...).
Avoid allowing grid nodes to fall on sheets.

NumberOfZCoords |int Number of coordinates in z in field map grid in Write mode. Takes
default from datacard NumberNodesZGrid (500).

NumberOfRCoords |int Number of coordintes in r in field map grid in Write mode. Takes
default from datacard NumberNodesRGrid (100).

NumberOfSheets int Number of sheets used to calculate the field. Takes default from
datacard DefaultNumberOfSheets (10).

FieldTolerance double |Mandatory when FieldMapMode is WriteDynamic. If field map mode
is write dynamic, this datacard controls the tolerance on errors in the
field with which the field grid and the grid extent will be chosen.

Interpolation string | Choose the interpolation algorithm. Options are BiLinear for a linear

Algorithm interpolation in r and z, or LinearCubic for a linear interpolation in r
and a cubic spline in z. Default is LinearCubic.

IsAmalgamated bool | Setto 1 to add the coil to CoilAmalgamtion parent field (see below).

FieldType FieldAmalgamation

During tracking, G4MICE stores a list of fields and for each one G4AMICE checks to see if tracking is
performed through a particular field map's bounding box. This can be slow if a large number of fields
are present. One way to speed this up is to store contributions from many coils in a single
CoilAmalgamation. A CoilAmalgamation searches through child modules for solenoids with
PropertyBool IsAmalgamated set to true. If it finds such a coil, it will add the field generated by the
solenoid to its own field map and disable the coil.

Property Type |Description

Length double | The Length of the field map generated by the CoilAmalgamation.

RMax double | The maximum radius of the field map generated by the
CoilAmalgamation.

Interpolation string | Choose the interpolation algorithm. Options are BiLinear for a linear

Algorithm interpolation in r and z, or LinearCubic for a linear interpolation in r
and a cubic spline in z. Default is LinearCubic.

ZStep double |Step size of the field map generated by the CoilAmalgamation.

RStep double

FieldType FastSolenoid

This is an alternative field model for solenoids that uses a power law expansion of the on-axis magnetic
field and its derivatives, and an exponential fall-off for the fringe field (tanh).

Property Type |Description

PeakField double |Nominal peak field of the solenoid.

EFoldLength double | The fall-off length for the fringe field.

CentreLength double |Nominal length for the peak field region.

Order int Order to which the field will be calculated.

FieldTolerance double |If positive, GAMICE will abort tracking if a particle crosses through a
field with estimated error > FieldTolerance. G4MICE estimates the
error as the field value calculated at highest order. Default is -1 (i.e.
inactive).

Phasing Models

G4MICE has a number of sophisticated models for phasing RF cavities. These powerful models can
make setting up RF cavities with realistic fields both quick and easy.

When CavityMode is Unphased, G4AMICE attempts to phase the cavity itself. When using CavityMode
Unphased G4MICE needs to know when particles enter, cross the middle, and leave cavities. This
means that:

e The cavity must sit in a rectangular or cylindrical physical volume.
e No other physical volumes may overlap or sit within the physical volume of the cavity.
If these conditions are not met the phasing algorithm is likely to fail.

To phase a cavity, G4MICE builds a volume in the centre of the cavity that is used for phasing and then
fires a reference particle through the system. Stochastic processes are always disabled during this
process, while mean energy loss can be disabled using the datacard ReferenceEnergyLossModel. If a
reference particle crosses a plane through the centre of a cavity, it sets the phase of the cavity to the
time at which the particle crosses.

The field of the cavity during phasing is controlled by the property FieldDuringPhasing. There are four
modes:

e None: Cavity fields are disabled during phasing

e FElectrostatic: An electrostatic field with no positional dependence given by
PeakEField*sin(ReferenceParticlePhase) is enabled during phasing.

e TimeVarying: A standard time varying field is applied during phasing, initially with arbitrary
phase relative to the reference particle. G4MICE uses a Newton-Raphson method to find the
appropriate reference phase iteratively, with tolerance set by the datacard PhaseTolerance.

e FEnergyGainOptimised: A standard time varying field is applied during phasing, initially with
arbitrary phase and peak field relative to the reference particle. G4MICE uses a 2D Newton-
Raphson method to find the appropriate reference phase and peak field iteratively, so that the

reference particle crosses the cavity centre with phase given by property
ReferenceParticlePhase and gains energy over the whole cavity given by property EnergyGain
with tolerances set by the datacards PhaseTolerance and RFDeltaEnergyTolerance.

Tracking Stability Around RF Cavities

Usually RF cavities have little or no fringe field, and this can lead to some instability in the tracking
algorithms. When G4MICE makes a step into an RF cavity volume, the tracking algorithms tend to
smooth out a field in a non-physical way. This can be prevented by either (i) making the step size rather
small in the RF cavity or (ii) forcing G4MICE to stop tracking by adding a physical volume at the
entrance of the RF cavity (a window, typically made of vacuum). Doing this should improve stability
of tracking.

FieldType PillBox

Sets a PillBox field in a particular region. G4AMICE represents pillboxes using a sinusoidally varying
TMO10 pill box field, with non-zero field vector elements given by

B,=],(k.r)cos(wt)
E,=]J,(k.r)cos(wt)

Here J, are Bessel functions and k; is a constant. See, for example, SY Lee VI.1. All other fields are 0.

Property Type |Description

Length double |Length of the region in which the field is present.

CavityMode string | Phasing mode of the cavity - options are Phased, Unphased and
Electrostatic.

FieldDuringPhasing |string |Controls the field during cavity phasing — options are None,
Electrostatic, TimeVarying and EnergyGainOptimised.

EnergyGain double | WhenFieldDuringPhasing is set to EnergyGainOptimised, controls the
peak electric field.

Frequency double | The cavity frequency.

PeakEField double | The peak field of the cavity. Not used when the FieldDuringPhasing is
EnergyGainOptimised.

TimeDelay double |In Phased mode the time delay (absolute time) of the cavity.

PhasingVolume string | Set to SpecialVirtual to make the central volume a special virtual.

ReferenceParticle double |In Electrostatic mode, G4MICE calculates the peak field and the field
Energy the reference particle sees using a combination of the reference
particle energy, charge and phase. Take defaults from datacards
NominalKineticEnergy and MuonCharge

ReferenceParticle double
Charge

ReferenceParticle double | GAMICE tries to phase the field so that the reference particle crosses
Phase the cavity at ReferenceParticlePhase (units are angular). 0°
corresponds to no energy gain, 90° corresponds to operation on-crest.
Default from datacard rfAcclerationPhase.

FieldType RFFieldMap

Sets a cavity with an RF field map in a particular region. RFFieldMap uses the same phasing algorithm
as described above.

Property Type |Description
Length double |Length of the region in which the field is present.
CavityMode string | Phasing mode of the cavity - options are Phased and Unphased.

RFFieldMaps cannot operated in Electrostatic mode.

FieldDuringPhasing |string |Controls the field during cavity phasing — options are None,
Electrostatic, TimeVarying and EnergyGainOptimised.

EnergyGain double | WhenFieldDuringPhasing is set to EnergyGainOptimised, controls the
peak electric field.

Frequency double | The cavity frequency.

PeakEField double | The peak field of the cavity. Not used when the FieldDuringPhasing is
EnergyGainOptimised.

TimeDelay double |In Phased mode the time delay (absolute time) of the cavity.

PhasingVolume string | Set to SpecialVirtual to make the central volume a special virtual.

ReferenceParticle double |In Electrostatic mode, G4AMICE calculates the peak. field and the field
Energy the reference particle sees using a combination of the reference

ReferenceParticle double particle energy, charge and phase. Take defaults from datacards

Charge NominalKineticEnergy and MuonCharge

ReferenceParticle double |G4MICE tries to phase the field so that the reference particle crosses

Phase the cavity at ReferenceParticlePhase (units are angular). 0°
corresponds to no energy gain, 90° corresponds to operation on-crest.
Default from datacard rfAcclerationPhase.

FileName string | The file name of the field map file.

FileType string | The file type of the field map. Only supported option is SuperFishSF7.

FieldType Multipole

Creates a multipole of arbitrary order. Fields are generated using either a hard edged model, with no
fringe fields at all; or an Enge model similar to ZGoubi and COSY. In the former case fields are
calculated using a simple polynomial expansion. In the latter case fields are calculated using the
polynomial expansion with an additional exponential drop off. Fields can be superimposed onto a bent
coordinate system to generate a sector multipole with arbitrary fixed radius of curvature.

Unlike most other field models in G4MICE, the zero position corresponds to the center of the entrance
of the multipole; and the multipole extends in the +z direction.

The method to define end fields is described in the section EndFieldTypes below

Property Type |Description

Pole int The reference pole of the magnet. 1=dipole, 2=quadrupole,
3=sextupole etc.

Magnitude double | The field at the position (X,y,z) = (Width/2, 0, Length/2) in the
multipole coordinate system. This corresponds to the position at the
edge of the field map at the centre of the magnet in z. Note that this is
mandatory in all cases except where CurvatureModel is
MomentumBased, when the BendingAngle is used to calculate the
peak (dipole) field instead.

Height double |Height of the field region.

Width double | Width or delta radius of the field region.

Length double |Length of the field along the bent trajectory.

EndFieldType string | Set to HardEdged to disable fringe fields. Set to Enge or Tanh to use
those models, as described elsewhere. Default is HardEdged.

CurvatureModel string | Choose the model for curvature. Straight forces no curvature. Constant
gives a constant radius of curvature; StraightEnds gives a constant
radius of curvature along the length of the multipole with straight end
fields beyond this length. MomentumBased gives radius of curvature
determined by a momentum and a total bending angle.

ReferenceCurvature |double |Radius of curvature of the magnet in Constant or StraightEnds mode.
Set to O for a straight magnet. Default is O.

ReferenceMomentum |double |Reference momentum used to calculate the radius of curvature of a
dipole in MomentumBased mode. Default is 0.

BendingAngle double | The angle used to calculate the radius of curvature of a dipole in

MomentumBased mode. Note that this is mandatory in
MomentumBased mode.

FieldType CombinedFunction

This creates superimposed dipole, quadrupole and sextupole fields with a common radius of curvature.
The field is intended to mimic the first few terms in a multipole expansion of a field like

k
r

B(y=0)=B, -
0

The field index is a user defined parameter, while the dipole field and radius of curvature can either be
defined directly by the user or defined in terms of a reference momentum and total bending angle.
Fields are calculated as in the multipole field type defined above.

Property Type |Description

Pole int The reference pole of the magnet. 1=dipole, 2=quadrupole,
3=sextupole etc.

BendingField double | The nominal dipole field B,. Note that this is mandatory in all cases
except where CurvatureModel is MomentumBased, when the
BendingAngle and ReferenceMomentum is used to calculate the

dipole field instead.
FieldIndex double |The field index k.
Height double |Height of the field region.
Width double | Width or delta radius of the field region.
Length double |Length of the field along the bent trajectory.
EndFieldType string | Set to HardEdged to disable fringe fields. Set to Enge or Tanh to use

those models, as described elsewhere. Default is HardEdged.

CurvatureModel string | Choose the model for curvature. Straight forces no curvature. Constant
gives a constant radius of curvature; StraightEnds gives a constant
radius of curvature along the length of the multipole with straight end
fields beyond this length. MomentumBased gives radius of curvature
determined by a momentum and a total bending angle.

ReferenceCurvature |double Radius of curvature of the magnet in Constant or StraightEnds mode.
Set to O for a straight magnet. Default is 0.

ReferenceMomentum | double |Reference momentum used to calculate the radius of curvature of a
dipole in MomentumBased mode. Default is 0.

BendingAngle double | The angle used to calculate the radius of curvature of a dipole in
MomentumBased mode. Note that this is mandatory in
MomentumBased mode.

EndFieldTypes

In the absence of current sources, the magnetic field can be calculated from a scalar potential using the
standard relation

B=VV,
The scalar magnetic potential of the n™-order multipole field is given by

L Gy sin ()

@
V=2 2 nl
q=0

m=0 4q!(n+q)!m!(n—m)!

where G(s) is either the double Enge function,
G(s)=E[(x—x,)/A]+E[(=x—x,)/A]-1

with

B, 1

R 1+exp(C,+C,5+C s5+...)

E(s)=

or G(s) is the double tanh function,
G (s)=tanh[(x+x,)/A]/2+tanh[(x—x,)/A]/2

and (r, y, s) is the position vector in the rotating coordinate system. Note that here s is the distance from
the nominal end of the field map.

Property Type |Description

EndFieldType string | Set to HardEdged to disable fringe fields. Set to Enge or Tanh to use
those models, as described elsewhere. Default is HardEdged.

The following properties are used for EndFieldType Tanh

EndLength double | Set the A parameter that defines the rapidity of the field fall off.
CentreLength double | Set the x, parameter that defines the length of the flat field region.
MaxEndPole int Set the maximum pole that will be calculated — should be larger than

the multipole pole.

The following properties are used for EndFieldType Enge

EndLength double | Set the A parameter that defines the rapidity of the field fall off.
CentreLength double | Set the x, parameter that defines the length of the flat field region.
MaxEndPole int Set the maximum pole that will be calculated — should be larger than
the multipole pole.
Engel double |Set the parameters C; as defined in the Enge function above.
Enge2 double
double

EngeN double

FieldType MagneticFieldMap

Reads or writes a magnetic field map in a particular region. Two sorts of field maps are supported;
either a 2d field map, in which cylindrical symmetry is assumed, or a 3d field map.

For 2d field maps, G4MICE reads or writes a file that contains information about the radial and
longitudinal field components. This is intended for solenoidal field maps where only radial and
longitudinal field components are present. Note that in write mode, G4MICE assumes cylindrical
symmetry of the fields. In this case, G4MICE writes the x and z components of the magnetic field at
points on a grid in x and z. Fields with an electric component are excluded from this summation.

For 3d field maps, G4MICE reads a file that contains the position and field in cartesian coordinates and
performs a linear interpolation. This requires quite large field map files; the file size can be slightly
reduced by using certain symmetries, as described below. It is currently not possible to write 3d field
maps.

Property Type |Description

FieldMapMode string | Set to Read to read a field map; and Write to write a field map.
FileName string | The file name that is used for reading or writing.

FileType string | The file format. Supported options in Read mode are g4micetext,

g4micebinary, gdbeamline, icool, g4bl3dGrid. Only g4micetext is
supported in Write mode. Default is gdmicetext.

Symmetry string | Symmetry option for g4bl3dGrid file type. Options are None, Dipole
or Quadrupole. None uses the field map as is, while Dipole and
Quadrupole reflect the octant between the positive x, y and z axes to
give an appropriate field for a dipole or quadrupole.

ZStep double |Step size in z and r. Mandatory in Write mode but not used in Read
RStep double mode (where step size comes from the map file).

ZMin double |Upper and lower bounds in z and r. Mandatory in Write mode but not
TMax double used in Read mode (where boundaries come from the map file).
RMin double

RMax double

Some file formats are described below. I am working towards making the file format more generic and
hence possibly easier to use, but backwards compatibility will hopefully be maintained.

gdmicetext Field Map Format

The native field map format used by gdmice in text mode is described below.
idType = Uniform N = nunber_rows
71 = z_start Z2 = z_end dZ = z_step
RL = r_start R2 = r_end dR = r_step

Bz_Val ues Br_Val ues

<Repeat as necessary>

In this mode, field maps are represented by field values on a regular 2d grid that is assumed to have
solenoidal symmetry, i.e. cylindrical symmetry with no tangential component.

Name Type Description

nunber _r ows double Number of rows in the field map file.
z_start double Position of the grid start along the z axis.
z_end double Position of the grid end along the z axis.
Z step double Step size in z.

r_start double Position of the grid start along the r axis.
r_end double Position of the grid end along the r axis.
r_step double Step size in r.

Bz_Val ues double Bz field value.

Br _Val ues double Br field value.

g4bl3dGrid Field Map Format

The file format for 3d field maps is a slightly massaged version of a file format used by another code,
gdbeamline. In this mode, field maps are represented by field values on a regular cartesian 3d grid.

nunber _x_poi nts nunber_y points nunber_z points gl obal _scale
X [x_scal €]
Y [y_scal €]
Z [z_scal €]
BX [bx_scal €]

1

2

3

4

5 BY [by_scal €]
6 BZ [bz_scal €]
0
X_

Val ues Y _Val ues Z Val ues Bx_val ues By _val ues Bz _val ues

<Repeat as necessary>

where text in bold indicates a value described in the following table

Name Type Description

nunber _x_points double Number of points along x axis.
nunber _y_points |double Number of points along y axis.
nunber _z points double Number of points along z axis.

gl obal _scal e double Global scale factor applied to all x, y, z and Bx, By, Bz values.
x_scal e double Scale factor applied to all x values.
y_scale double Scale factor applied to all y values.
z_scale double Scale factor applied to all z values.
bx_scal e double Scale factor applied to all Bx values.
by_scal e double Scale factor applied to all By values.
bz_scal e double Scale factor applied to all Bz values.
X_Val ues double List (column) of each x value.

Y_Val ues double List (column) of each y value.

Z Val ues double List (column) of each z value.
Bx_Val ues double List (column) of each Bx value.

By Val ues double List (column) of each By value.
Bz_Val ues double List (column) of each Bz value.

	Mice Module Documentation
	How to Use this document

	Overview
	Configuration File
	Substitutions
	Expressions
	Expression Substitutions

	Module Files
	Volume and Dimensions
	Properties
	Child Modules
	Module Hierarchy and GEANT4 Physical Volumes
	A Sample Configuration File
	A Sample Child Module File

	Geometry and Tracking Properties
	General Properties
	Sensitive Detectors
	Scintillating Fibre Detector (SciFi)
	Cerenkov Detector (CKOV)
	Time Of Flight Counter (TOF)
	Special Virtual Detectors
	Virtual Detectors
	Envelope Detectors

	Unconventional Volumes
	Volume Wedge
	Volume Polycone
	Volume Quadrupole
	Volume Multipole
	Volume Boolean

	Repeating Modules
	Beam Definition and Beam Envelopes
	Optimiser

	Field Properties
	FieldType CylindricalField
	FieldType RectangularField
	FieldType Solenoid
	FieldType FieldAmalgamation
	FieldType FastSolenoid
	Phasing Models
	Tracking Stability Around RF Cavities
	FieldType PillBox
	FieldType RFFieldMap
	FieldType Multipole
	FieldType CombinedFunction
	EndFieldTypes
	FieldType MagneticFieldMap
	g4micetext Field Map Format
	g4bl3dGrid Field Map Format

