// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id$ // // Class description: // // The class consists of some methods for data interpolations and extrapolations. // The methods based mainly on recommendations given in the book : An introduction to // NUMERICAL METHODS IN C++, B.H. Flowers, Claredon Press, Oxford, 1995 // // ------------------------------ Data members: --------------------------------- // // fArgument and fFunction - pointers to data table to be interpolated // for y[i] and x[i] respectively // fNumber - the corresponding table size // ...... // G4DataInterpolation( G4double pX[], G4double pY[], G4int number ) // // Constructor for initializing of fArgument, fFunction and fNumber data members: // ...... // G4DataInterpolation( G4double pX[], G4double pY[], G4int number, // G4double pFirstDerStart, G4double pFirstDerFinish ) // // Constructor for cubic spline interpolation. It creates the array // fSecondDerivative[0,...fNumber-1] which is used in this interpolation by // the function: // .... // ~G4DataInterpolation() // // Destructor deletes dynamically created arrays for data members: fArgument, // fFunction and fSecondDerivative, all have dimension of fNumber // // ------------------------------ Methods: ---------------------------------------- // // G4double PolynomInterpolation(G4double pX, G4double& deltaY ) const // // This function returns the value P(pX), where P(x) is polynom of fNumber-1 degree // such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1 . // ........ // void PolIntCoefficient( G4double cof[]) const // // Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1] , this // function calculates an array of coefficients. The coefficients don't provide // usually (fNumber>10) better accuracy for polynom interpolation, as compared with // PolynomInterpolation function. They could be used instead for derivate // calculations and some other applications. // ......... // G4double RationalPolInterpolation(G4double pX, G4double& deltaY ) const // // The function returns diagonal rational function (Bulirsch and Stoer algorithm // of Neville type) Pn(x)/Qm(x) where P and Q are polynoms. // Tests showed the method is not stable and hasn't advantage if compared with // polynomial interpolation // ................ // G4double CubicSplineInterpolation(G4double pX) const // // Cubic spline interpolation in point pX for function given by the table: // fArgument, fFunction. The constructor, which creates fSecondDerivative, must be // called before. The function works optimal, if sequential calls are in random // values of pX. // .................. // G4double FastCubicSpline(G4double pX, G4int index) const // // Return cubic spline interpolation in the point pX which is located between // fArgument[index] and fArgument[index+1]. It is usually called in sequence of // known from external analysis values of index. // ......... // G4int LocateArgument(G4double pX) const // // Given argument pX, returns index k, so that pX bracketed by fArgument[k] and // fArgument[k+1] // ...................... // void CorrelatedSearch( G4double pX, G4int& index ) const // // Given a value pX, returns a value 'index' such that pX is between fArgument[index] // and fArgument[index+1]. fArgument MUST BE MONOTONIC, either increasing or // decreasing. If index = -1 or fNumber, this indicates that pX is out of range. // The value index on input is taken as the initial approximation for index on // output. // --------------------------------- History: -------------------------------------- // // 3.4.97 V.Grichine (Vladimir.Grichine@cern.ch) // #ifndef G4DATAINTERPOLATION_HH #define G4DATAINTERPOLATION_HH #include "globals.hh" class G4DataInterpolation { public: G4DataInterpolation( G4double pX[], G4double pY[], G4int number ); // Constructor for cubic spline interpolation. It creates fSecond Deivative array // as well as fArgument and fFunction G4DataInterpolation( G4double pX[], G4double pY[], G4int number, G4double pFirstDerStart, G4double pFirstDerFinish ) ; ~G4DataInterpolation() ; G4double PolynomInterpolation( G4double pX, G4double& deltaY ) const ; void PolIntCoefficient( G4double cof[]) const ; G4double RationalPolInterpolation( G4double pX, G4double& deltaY ) const ; G4double CubicSplineInterpolation( G4double pX ) const ; G4double FastCubicSpline( G4double pX, G4int index ) const ; G4int LocateArgument( G4double pX ) const ; void CorrelatedSearch( G4double pX, G4int& index ) const ; private: G4DataInterpolation(const G4DataInterpolation&); G4DataInterpolation& operator=(const G4DataInterpolation&); private: G4double* fArgument ; G4double* fFunction ; G4double* fSecondDerivative ; G4int fNumber ; } ; #endif