// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4JTPolynomialSolver.hh 69792 2013-05-15 12:59:26Z gcosmo $ // // Class description: // // G4JTPolynomialSolver implements the Jenkins-Traub algorithm // for real polynomial root finding. // The solver returns -1, if the leading coefficient is zero, // the number of roots found, otherwise. // // ----------------------------- INPUT -------------------------------- // // op - double precision vector of coefficients in order of // decreasing powers // degree - integer degree of polynomial // // ----------------------------- OUTPUT ------------------------------- // // zeror,zeroi - double precision vectors of the // real and imaginary parts of the zeros // // ---------------------------- EXAMPLE ------------------------------- // // G4JTPolynomialSolver trapEq ; // G4double coef[8] ; // G4double zr[7] , zi[7] ; // G4int num = trapEq.FindRoots(coef,7,zr,zi); // ---------------------------- HISTORY ------------------------------- // // Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond). // Translated to C++ and adapted to use STL vectors, // by Oliver Link (Oliver.Link@cern.ch) // // -------------------------------------------------------------------- #ifndef G4JTPOLYNOMIALSOLVER_HH #define G4JTPOLYNOMIALSOLVER_HH #include #include #include "globals.hh" class G4JTPolynomialSolver { public: G4JTPolynomialSolver(); ~G4JTPolynomialSolver(); G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi); private: std::vector p; std::vector qp; std::vector k; std::vector qk; std::vector svk; G4double sr; G4double si; G4double u,v; G4double a,b,c,d; G4double a1,a3,a7; G4double e,f,g,h; G4double szr,szi; G4double lzr,lzi; G4int n; /* The following statements set machine constants */ static const G4double base; static const G4double eta; static const G4double infin; static const G4double smalno; static const G4double are; static const G4double mre; static const G4double lo; void Quadratic(G4double a,G4double b1,G4double c, G4double *sr,G4double *si, G4double *lr,G4double *li); void ComputeFixedShiftPolynomial(G4int l2, G4int *nz); void QuadraticPolynomialIteration(G4double *uu,G4double *vv,G4int *nz); void RealPolynomialIteration(G4double *sss, G4int *nz, G4int *iflag); void ComputeScalarFactors(G4int *type); void ComputeNextPolynomial(G4int *type); void ComputeNewEstimate(G4int type,G4double *uu,G4double *vv); void QuadraticSyntheticDivision(G4int n, G4double *u, G4double *v, std::vector &p, std::vector &q, G4double *a, G4double *b); }; #endif