// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id$ // // class G4PolynomialSolver // // Class description: // // G4PolynomialSolver allows the user to solve a polynomial equation // with a great precision. This is used by Implicit Equation solver. // // The Bezier clipping method is used to solve the polynomial. // // How to use it: // Create a class that is the function to be solved. // This class could have internal parameters to allow to change // the equation to be solved without recreating a new one. // // Define a Polynomial solver, example: // G4PolynomialSolver // PolySolver (&MyFunction, // &MyFunctionClass::Function, // &MyFunctionClass::Derivative, // precision); // // The precision is relative to the function to solve. // // In MyFunctionClass, provide the function to solve and its derivative: // Example of function to provide : // // x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass // // G4double MyFunctionClass::Function(G4double value) // { // G4double Lx,Ly,Lz; // G4double result; // // Lx = x + value*dx; // Ly = y + value*dy; // Lz = z + value*dz; // // result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin); // // return result ; // } // // G4double MyFunctionClass::Derivative(G4double value) // { // G4double Lx,Ly,Lz; // G4double result; // // Lx = x + value*dx; // Ly = y + value*dy; // Lz = z + value*dz; // // result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin); // result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin); // result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin); // // return result; // } // // Then to have a root inside an interval [IntervalMin,IntervalMax] do the // following: // // MyRoot = PolySolver.solve(IntervalMin,IntervalMax); // // History: // // - 19.12.00 E.Medernach, First implementation // #ifndef G4POL_SOLVER_HH #define G4POL_SOLVER_HH #include "globals.hh" template class G4PolynomialSolver { public: // with description G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision); ~G4PolynomialSolver(); G4double solve (G4double IntervalMin, G4double IntervalMax); private: G4double Newton (G4double IntervalMin, G4double IntervalMax); //General Newton method with Bezier Clipping // Works for polynomial of order less or equal than 4. // But could be changed to work for polynomial of any order providing // that we find the bezier control points. G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax); // This is just one iteration of Bezier Clipping T* FunctionClass ; F Function ; F Derivative ; G4double Precision; }; #include "G4PolynomialSolver.icc" #endif