// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id$ // // Hadronic Process: Nuclear De-excitations // by V. Lara #ifndef G4StatMFMicroPartition_h #define G4StatMFMicroPartition_h 1 #include #include "globals.hh" #include "G4StatMFParameters.hh" #include "G4StatMFChannel.hh" class G4StatMFMicroPartition { public: // Constructor G4StatMFMicroPartition(const G4int A, const G4double Z) : theA(A), theZ(Z), _Probability(0.0), _Temperature(0.0), _Entropy(0.0) {}; // Destructor ~G4StatMFMicroPartition() {}; private: // Default constructor G4StatMFMicroPartition() {}; // Copy constructor G4StatMFMicroPartition(const G4StatMFMicroPartition & right); // operators G4StatMFMicroPartition & operator=(const G4StatMFMicroPartition & right); public: G4bool operator==(const G4StatMFMicroPartition & right) const; G4bool operator!=(const G4StatMFMicroPartition & right) const; public: // Gives fragments charges G4StatMFChannel * ChooseZ(const G4double A0, const G4double Z0, const G4double MeanT); G4double GetProbability(void) { return _Probability; } void SetPartitionFragment(const G4int anA) { _thePartition.push_back(anA); CoulombFreeEnergy(anA); } void Normalize(const G4double Normalization) { _Probability /= Normalization; } G4double CalcPartitionProbability(const G4double U, const G4double FreeInternalE0, const G4double SCompound); G4double GetTemperature(void) { return _Temperature; } G4double GetEntropy(void) { return _Entropy; } private: void CoulombFreeEnergy(const G4double anA); G4double CalcPartitionTemperature(const G4double U, const G4double FreeInternalE0); G4double GetPartitionEnergy(const G4double T); G4double GetCoulombEnergy(void); G4double GetDegeneracyFactor(const G4int A); G4double InvLevelDensity(const G4double Af) { // Calculate Inverse Density Level // Epsilon0*(1 + 3 /(Af - 1)) if (Af < 1.5) return 0.0; else return G4StatMFParameters::GetEpsilon0()*(1.0+3.0/(Af - 1.0)); } private: // A and Z of initial nucleus G4double theA; G4double theZ; // Partition probability G4double _Probability; // Partition temperature G4double _Temperature; // Partition entropy G4double _Entropy; // The partition itself std::vector _thePartition; std::vector _theCoulombFreeEnergy; }; #endif