// $Id: RandBinomial.cc,v 1.5 2010/06/16 17:24:53 garren Exp $ // -*- C++ -*- // // ----------------------------------------------------------------------- // HEP Random // --- RandBinomial --- // class implementation file // ----------------------------------------------------------------------- // ======================================================================= // John Marraffino - Created: 12th May 1998 // M Fischler - put and get to/from streams 12/10/04 // M Fischler - put/get to/from streams uses pairs of ulongs when // + storing doubles avoid problems with precision // 4/14/05 // // ======================================================================= #include "CLHEP/Random/RandBinomial.h" #include "CLHEP/Random/defs.h" #include "CLHEP/Random/DoubConv.hh" #include // for min() and max() #include // for exp() using namespace std; namespace CLHEP { std::string RandBinomial::name() const {return "RandBinomial";} HepRandomEngine & RandBinomial::engine() {return *localEngine;} RandBinomial::~RandBinomial() { } double RandBinomial::shoot( HepRandomEngine *anEngine, long n, double p ) { return genBinomial( anEngine, n, p ); } double RandBinomial::shoot( long n, double p ) { HepRandomEngine *anEngine = HepRandom::getTheEngine(); return genBinomial( anEngine, n, p ); } double RandBinomial::fire( long n, double p ) { return genBinomial( localEngine.get(), n, p ); } void RandBinomial::shootArray( const int size, double* vect, long n, double p ) { for( double* v = vect; v != vect+size; ++v ) *v = shoot(n,p); } void RandBinomial::shootArray( HepRandomEngine* anEngine, const int size, double* vect, long n, double p ) { for( double* v = vect; v != vect+size; ++v ) *v = shoot(anEngine,n,p); } void RandBinomial::fireArray( const int size, double* vect) { for( double* v = vect; v != vect+size; ++v ) *v = fire(defaultN,defaultP); } void RandBinomial::fireArray( const int size, double* vect, long n, double p ) { for( double* v = vect; v != vect+size; ++v ) *v = fire(n,p); } /************************************************************************* * * * StirlingCorrection() * * * * Correction term of the Stirling approximation for log(k!) * * (series in 1/k, or table values for small k) * * with long int parameter k * * * ************************************************************************* * * * log k! = (k + 1/2)log(k + 1) - (k + 1) + (1/2)log(2Pi) + * * StirlingCorrection(k + 1) * * * * log k! = (k + 1/2)log(k) - k + (1/2)log(2Pi) + * * StirlingCorrection(k) * * * *************************************************************************/ static double StirlingCorrection(long int k) { #define C1 8.33333333333333333e-02 // +1/12 #define C3 -2.77777777777777778e-03 // -1/360 #define C5 7.93650793650793651e-04 // +1/1260 #define C7 -5.95238095238095238e-04 // -1/1680 static double c[31] = { 0.0, 8.106146679532726e-02, 4.134069595540929e-02, 2.767792568499834e-02, 2.079067210376509e-02, 1.664469118982119e-02, 1.387612882307075e-02, 1.189670994589177e-02, 1.041126526197209e-02, 9.255462182712733e-03, 8.330563433362871e-03, 7.573675487951841e-03, 6.942840107209530e-03, 6.408994188004207e-03, 5.951370112758848e-03, 5.554733551962801e-03, 5.207655919609640e-03, 4.901395948434738e-03, 4.629153749334029e-03, 4.385560249232324e-03, 4.166319691996922e-03, 3.967954218640860e-03, 3.787618068444430e-03, 3.622960224683090e-03, 3.472021382978770e-03, 3.333155636728090e-03, 3.204970228055040e-03, 3.086278682608780e-03, 2.976063983550410e-03, 2.873449362352470e-03, 2.777674929752690e-03, }; double r, rr; if (k > 30L) { r = 1.0 / (double) k; rr = r * r; return(r*(C1 + rr*(C3 + rr*(C5 + rr*C7)))); } else return(c[k]); } double RandBinomial::genBinomial( HepRandomEngine *anEngine, long n, double p ) { /****************************************************************** * * * Binomial-Distribution - Acceptance Rejection/Inversion * * * ****************************************************************** * * * Acceptance Rejection method combined with Inversion for * * generating Binomial random numbers with parameters * * n (number of trials) and p (probability of success). * * For min(n*p,n*(1-p)) < 10 the Inversion method is applied: * * The random numbers are generated via sequential search, * * starting at the lowest index k=0. The cumulative probabilities * * are avoided by using the technique of chop-down. * * For min(n*p,n*(1-p)) >= 10 Acceptance Rejection is used: * * The algorithm is based on a hat-function which is uniform in * * the centre region and exponential in the tails. * * A triangular immediate acceptance region in the centre speeds * * up the generation of binomial variates. * * If candidate k is near the mode, f(k) is computed recursively * * starting at the mode m. * * The acceptance test by Stirling's formula is modified * * according to W. Hoermann (1992): The generation of binomial * * random variates, to appear in J. Statist. Comput. Simul. * * If p < .5 the algorithm is applied to parameters n, p. * * Otherwise p is replaced by 1-p, and k is replaced by n - k. * * * ****************************************************************** * * * FUNCTION: - btpec samples a random number from the binomial * * distribution with parameters n and p and is * * valid for n*min(p,1-p) > 0. * * REFERENCE: - V. Kachitvichyanukul, B.W. Schmeiser (1988): * * Binomial random variate generation, * * Communications of the ACM 31, 216-222. * * SUBPROGRAMS: - StirlingCorrection() * * ... Correction term of the Stirling * * approximation for log(k!) * * (series in 1/k or table values * * for small k) with long int k * * - anEngine ... Pointer to a (0,1)-Uniform * * engine * * * * Implemented by H. Zechner and P. Busswald, September 1992 * ******************************************************************/ #define C1_3 0.33333333333333333 #define C5_8 0.62500000000000000 #define C1_6 0.16666666666666667 #define DMAX_KM 20L static long int n_last = -1L, n_prev = -1L; static double par,np,p0,q,p_last = -1.0, p_prev = -1.0; static long b,m,nm; static double pq, rc, ss, xm, xl, xr, ll, lr, c, p1, p2, p3, p4, ch; long bh,i, K, Km, nK; double f, rm, U, V, X, T, E; if (n != n_last || p != p_last) // set-up { n_last = n; p_last = p; par=min(p,1.0-p); q=1.0-par; np = n*par; // Check for invalid input values if( np <= 0.0 ) return (-1.0); rm = np + par; m = (long int) rm; // mode, integer if (np<10) { p0=exp(n*log(q)); // Chop-down bh=(long int)(np+10.0*sqrt(np*q)); b=min(n,bh); } else { rc = (n + 1.0) * (pq = par / q); // recurr. relat. ss = np * q; // variance i = (long int) (2.195*sqrt(ss) - 4.6*q); // i = p1 - 0.5 xm = m + 0.5; xl = (double) (m - i); // limit left xr = (double) (m + i + 1L); // limit right f = (rm - xl) / (rm - xl*par); ll = f * (1.0 + 0.5*f); f = (xr - rm) / (xr * q); lr = f * (1.0 + 0.5*f); c = 0.134 + 20.5/(15.3 + (double) m); // parallelogram // height p1 = i + 0.5; p2 = p1 * (1.0 + c + c); // probabilities p3 = p2 + c/ll; // of regions 1-4 p4 = p3 + c/lr; } } if (np<10) //Inversion Chop-down { double pk; K=0; pk=p0; U=anEngine->flat(); while (U>pk) { ++K; if (K>b) { U=anEngine->flat(); K=0; pk=p0; } else { U-=pk; pk=(double)(((n-K+1)*par*pk)/(K*q)); } } return ((p>0.5) ? (double)(n-K):(double)K); } for (;;) { V = anEngine->flat(); if ((U = anEngine->flat() * p4) <= p1) // triangular region { K=(long int) (xm - U + p1*V); return ((p>0.5) ? (double)(n-K):(double)K); // immediate accept } if (U <= p2) // parallelogram { X = xl + (U - p1)/c; if ((V = V*c + 1.0 - fabs(xm - X)/p1) >= 1.0) continue; K = (long int) X; } else if (U <= p3) // left tail { if ((X = xl + log(V)/ll) < 0.0) continue; K = (long int) X; V *= (U - p2) * ll; } else // right tail { if ((K = (long int) (xr - log(V)/lr)) > n) continue; V *= (U - p3) * lr; } // acceptance test : two cases, depending on |K - m| if ((Km = labs(K - m)) <= DMAX_KM || Km + Km + 2L >= ss) { // computation of p(K) via recurrence relationship from the mode f = 1.0; // f(m) if (m < K) { for (i = m; i < K; ) { if ((f *= (rc / ++i - pq)) < V) break; // multiply f } } else { for (i = K; i < m; ) { if ((V *= (rc / ++i - pq)) > f) break; // multiply V } } if (V <= f) break; // acceptance test } else { // lower and upper squeeze tests, based on lower bounds for log p(K) V = log(V); T = - Km * Km / (ss + ss); E = (Km / ss) * ((Km * (Km * C1_3 + C5_8) + C1_6) / ss + 0.5); if (V <= T - E) break; if (V <= T + E) { if (n != n_prev || par != p_prev) { n_prev = n; p_prev = par; nm = n - m + 1L; ch = xm * log((m + 1.0)/(pq * nm)) + StirlingCorrection(m + 1L) + StirlingCorrection(nm); } nK = n - K + 1L; // computation of log f(K) via Stirling's formula // final acceptance-rejection test if (V <= ch + (n + 1.0)*log((double) nm / (double) nK) + (K + 0.5)*log(nK * pq / (K + 1.0)) - StirlingCorrection(K + 1L) - StirlingCorrection(nK)) break; } } } return ((p>0.5) ? (double)(n-K):(double)K); } std::ostream & RandBinomial::put ( std::ostream & os ) const { int pr=os.precision(20); std::vector t(2); os << " " << name() << "\n"; os << "Uvec" << "\n"; t = DoubConv::dto2longs(defaultP); os << defaultN << " " << defaultP << " " << t[0] << " " << t[1] << "\n"; os.precision(pr); return os; #ifdef REMOVED int pr=os.precision(20); os << " " << name() << "\n"; os << defaultN << " " << defaultP << "\n"; os.precision(pr); return os; #endif } std::istream & RandBinomial::get ( std::istream & is ) { std::string inName; is >> inName; if (inName != name()) { is.clear(std::ios::badbit | is.rdstate()); std::cerr << "Mismatch when expecting to read state of a " << name() << " distribution\n" << "Name found was " << inName << "\nistream is left in the badbit state\n"; return is; } if (possibleKeywordInput(is, "Uvec", defaultN)) { std::vector t(2); is >> defaultN >> defaultP; is >> t[0] >> t[1]; defaultP = DoubConv::longs2double(t); return is; } // is >> defaultN encompassed by possibleKeywordInput is >> defaultP; return is; } } // namespace CLHEP