/* This file is part of MAUS: http://micewww.pp.rl.ac.uk:8080/projects/maus * * MAUS is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MAUS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MAUS. If not, see . * */ // These ifdefs are required to avoid cpp compiler warning #ifdef _POSIX_C_SOURCE #undef _POSIX_C_SOURCE #endif #ifdef _XOPEN_SOURCE #undef _XOPEN_SOURCE #endif #include #include #include #include #include #include #include "src/common_cpp/Utils/Exception.hh" #include "src/common_cpp/Utils/Globals.hh" #include "src/common_cpp/Optics/PolynomialOpticsModel.hh" #include "src/common_cpp/Optics/CovarianceMatrix.hh" #include "src/common_cpp/Optics/PhaseSpaceVector.hh" #include "src/common_cpp/Optics/OpticsModel.hh" #include "src/py_cpp/optics/PyCovarianceMatrix.hh" #include "src/py_cpp/optics/PyPhaseSpaceVector.hh" #include "src/py_cpp/optics/PyOpticsModel.hh" namespace MAUS { namespace PyOpticsModel { std::string transport_covariance_matrix_docstring = std::string("Transport a CovarianceMatrix.\n\n")+ std::string(" - cov_matrix (covariance_matrix): CovarianceMatrix object\n")+ std::string(" that represents the start CovarianceMatrix\n")+ std::string(" - end_position (float): z position for tracking. Optics\n")+ std::string(" will attempt to track to the nearest VirtualPlane to this\n")+ std::string(" z position.\n")+ std::string("Returns a new transported covariance_matrix object"); // note we don't use Transport(cov_matrix, start, end) as this can make a // segmentation fault PyObject* transport_covariance_matrix(PyObject *self, PyObject *args, PyObject *kwds) { PyOpticsModel* py_optics_model = reinterpret_cast(self); if (py_optics_model == NULL) { PyErr_SetString(PyExc_TypeError, "Failed to interpret self as an optics_model"); return NULL; } OpticsModel* optics_model = get_optics_model(py_optics_model); PyObject* py_cm_in = NULL; double end_plane = std::numeric_limits::max()/10.; static char *kwlist[] = {const_cast("cov_matrix"), const_cast("end_position"), NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "Od", kwlist, &py_cm_in, &end_plane)) { return NULL; } CovarianceMatrix* cm_in = PyCovarianceMatrix::get_covariance_matrix(py_cm_in); if (cm_in == NULL) { PyErr_SetString(PyExc_TypeError, "Failed to extract a covariance matrix from cov_matrix"); return NULL; } CovarianceMatrix* cm_out = NULL; try { cm_out = new CovarianceMatrix(optics_model->Transport (*cm_in, end_plane)); } catch (std::exception& exc) { PyErr_SetString(PyExc_RuntimeError, (&exc)->what()); return NULL; } PyObject* py_cm_out = PyCovarianceMatrix::create_empty_matrix(); PyCovarianceMatrix::set_covariance_matrix(py_cm_out, cm_out); Py_INCREF(py_cm_out); return py_cm_out; } std::string transport_phase_space_vector_docstring = std::string("Transport a PhaseSpaceVector.\n\n")+ std::string(" - phase_space_vector (PhaseSpaceVector): phase space vector\n")+ std::string(" object that represents the start coordinate\n")+ std::string(" - end_position (float): z position for tracking. Optics\n")+ std::string(" will attempt to track to the nearest VirtualPlane to this\n")+ std::string(" z position.\n")+ std::string("Returns a new transported PhaseSpaceVector"); // note we don't use Transport(cov_matrix, start, end) as this can make a // segmentation fault PyObject* transport_phase_space_vector(PyObject *self, PyObject *args, PyObject *kwds) { PyOpticsModel* py_optics_model = reinterpret_cast(self); if (py_optics_model == NULL) { PyErr_SetString(PyExc_TypeError, "Failed to interpret self as an optics_model"); return NULL; } OpticsModel* optics_model = get_optics_model(py_optics_model); PyObject* py_psv_in = NULL; double end_plane = std::numeric_limits::max()/10.; static char *kwlist[] = {const_cast("phase_space_vector"), const_cast("end_position"), NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "Od", kwlist, &py_psv_in, &end_plane)) { return NULL; } PhaseSpaceVector* psv_in = PyPhaseSpaceVector::get_phase_space_vector(py_psv_in); if (psv_in == NULL) { PyErr_SetString(PyExc_TypeError, "Failed to extract a PhaseSpaceVector from phase_space_vector"); return NULL; } PhaseSpaceVector* psv_out = NULL; try { psv_out = new PhaseSpaceVector(optics_model->Transport (*psv_in, end_plane)); } catch (std::exception& exc) { PyErr_SetString(PyExc_RuntimeError, (&exc)->what()); return NULL; } PyObject* py_psv_out = PyPhaseSpaceVector::create_empty_vector(); PyPhaseSpaceVector::set_phase_space_vector(py_psv_out, psv_out); Py_INCREF(py_psv_out); return py_psv_out; } PyObject *_alloc(PyTypeObject *type, Py_ssize_t nitems) { void* void_optics = malloc(sizeof(PyOpticsModel)); PyOpticsModel* optics = reinterpret_cast(void_optics); optics->model = NULL; optics->ob_refcnt = 1; optics->ob_type = type; return reinterpret_cast(optics); } bool is_built = false; int _init(PyObject* self, PyObject *args, PyObject *kwds) { PyOpticsModel* optics = reinterpret_cast(self); // failed to cast or self was not initialised - something horrible happened if (optics == NULL) { PyErr_SetString(PyExc_TypeError, "Failed to resolve self as OpticsModel in __init__"); return -1; } // legal python to call initialised_object.__init__() to reinitialise, so // handle this case if (optics->model != NULL) { delete optics->model; optics->model = NULL; } // now initialise the internal optics model; for now hardcoded to // PolynomialOpticsModel try { Json::Value* cards = Globals::GetConfigurationCards(); // just gets deltas (dx, dy, ...) and polynomial order optics->model = new MAUS::PolynomialOpticsModel(cards); // uses MAUS::Globals::MAUSGeant4Manager for geometry, etc optics->model->Build(); is_built = true; // done by constructor } catch (std::exception& exc) { PyErr_SetString(PyExc_RuntimeError, (&exc)->what()); return -1; } return 0; } PyObject *_new(PyTypeObject *type, Py_ssize_t nitems) { return _alloc(type, nitems); } void _dealloc(PyOpticsModel * self) { _free(self); } void _free(PyOpticsModel * self) { if (self != NULL) { if (self->model != NULL) delete self->model; free(self); } } static PyMemberDef _members[] = { {NULL} }; OpticsModel* get_optics_model(PyOpticsModel* py_model) { return py_model->model; } static PyMethodDef _methods[] = { {"transport_covariance_matrix", (PyCFunction)transport_covariance_matrix, METH_VARARGS|METH_KEYWORDS, transport_covariance_matrix_docstring.c_str()}, {"transport_phase_space_vector", (PyCFunction)transport_phase_space_vector, METH_VARARGS|METH_KEYWORDS, transport_phase_space_vector_docstring.c_str()}, {NULL} }; const char* module_docstring = "optics_model module; merely a place holder for OpticsModel"; std::string class_docstring = std::string("OpticsModel transports particles and beam ellipses.\n\n")+ std::string("OpticsModel provides bindings to transport particles and beam\n")+ std::string("ellipses.\n\n")+ std::string("__init__()\n")+ std::string(" Takes no arguments. Sets up the OpticsModel with datacards\n")+ std::string(" and geometry stored in globals. Transport is initialised\n")+ std::string(" by expansion relative to 'simulation_reference_particle'\n")+ std::string(" datacard which also defines the start position for all\n")+ std::string(" transport."); static PyTypeObject PyOpticsModelType = { PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "optics_model.OpticsModel", /*tp_name*/ sizeof(PyOpticsModel), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ class_docstring.c_str(), /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ _methods, /* tp_methods */ _members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)_init, /* tp_init */ (allocfunc)_alloc, /* tp_alloc, called by new */ 0, // (newfunc)_new, /* tp_new */ (freefunc)_free, /* tp_free, called by dealloc */ }; PyMODINIT_FUNC initoptics_model(void) { PyOpticsModelType.tp_new = PyType_GenericNew; if (PyType_Ready(&PyOpticsModelType) < 0) return; int success = PyCovarianceMatrix::import_PyCovarianceMatrix(); if (success != 1) return; success = PyPhaseSpaceVector::import_PyPhaseSpaceVector(); if (success != 1) return; PyObject* module = Py_InitModule3("optics_model", NULL, module_docstring); if (module == NULL) return; PyTypeObject* optics_model_type = &PyOpticsModelType; Py_INCREF(optics_model_type); PyModule_AddObject(module, "OpticsModel", reinterpret_cast(optics_model_type)); } } // namespace PyOpticsModel } // namespace MAUS