// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // #ifndef G4QProbability_h #define G4QProbability_h 1 // // $Id: G4QProbability.hh,v 1.4 2009-09-04 16:13:19 mkossov Exp $ // GEANT4 tag $Name: not supported by cvs2svn $ // // ------------------------------------------------------------ // GEANT 4 class implementation file // // ---------------- G4QProbability ---------------- // by Mikhail Kossov Oct, 2006 // class for Pomeron & Reggeon amplitudes used by CHIPS // For comparison similar member functions are in the G4 class: // G4PomeronCrossSection // ------------------------------------------------------------ // Short description: Pomeron is one of the possible vacuum pole (the // second is Oderon, but they are identical in the present model), by // which particle exchang in the ellastic scattering process. Others // are Reggeons and, possibly Instantons (for spin-flip reactions). // Strings are cuts of Pomerons and Reggeons (optic theorem connects // the amplitude of scattering at zero angle with the total inelastic // cross-section). They describe inelastic processes at high energies. // ------------------------------------------------------------------ #include "globals.hh" class G4QProbability { public: G4QProbability(G4int PDGCode = 2212); ~G4QProbability(){;} void SetS0(G4double aS0) {S0 = aS0;} void SetPom_Gamma(G4double aPom_Gamma) {pom_Gamma = aPom_Gamma;} void SetGamma(const G4double aGam) {pom_Gamma=aGam/GeV/GeV;}// @@ Temporary? void SetPom_C(G4double aPom_C) {pom_C = aPom_C;} void SetPom_R2(G4double aPom_R2) {pom_R2 = aPom_R2;} void SetPom_Alpha(G4double aPom_Alpha) {pom_Alpha = aPom_Alpha;} void SetPom_Alphaprime(G4double aPom_Alphaprime){pom_Alphaprime = aPom_Alphaprime;} // Genegal (with low energies) G4double GetQexTotProbability(const G4double s, const G4double imp2); G4double GetQexCohProbability(const G4double s, const G4double imp2); G4double GetQexDiffProbability(const G4double s, const G4double imp2); G4double GetQexDubDiffProbability(const G4double s, const G4double imp2); G4double GetQexSinDiffProbability(const G4double s, const G4double imp2);//For each T & B G4double GetQexAbsProbability(const G4double s, const G4double imp2); G4double GetQexElProbability(const G4double s, const G4double imp2); G4double GetQexInelProbability(const G4double s, const G4double imp2); // Only Pomeron (high energies) G4double GetPomTotProbability(const G4double s, const G4double imp2) {return 2*(1.-std::exp(-PomEikonal(s,imp2)))/pom_C;} G4double GetPomCohProbability(const G4double s, const G4double imp2) {return sqr(1.-std::exp(-PomEikonal(s,imp2)))/pom_C;} G4double GetPomDiffProbability(const G4double s, const G4double imp2) {return ((pom_C-1.)/pom_C)*GetPomCohProbability(s,imp2);} G4double GetPomDubDiffProbability(const G4double s, const G4double imp2) {return (sqr(pom_sqC-1.)/pom_C)*GetPomCohProbability(s,imp2);} G4double GetPomSinDiffProbability(const G4double s, const G4double imp2) //For each T & B {return ((pom_sqC-1.)/pom_C)*GetPomCohProbability(s,imp2);} G4double GetPomAbsProbability(const G4double s, const G4double imp2) {return (1.-std::exp(-2*PomEikonal(s,imp2)))/pom_C;} G4double GetPomElProbability(const G4double s, const G4double imp2) {return GetPomCohProbability(s,imp2)/pom_C;} G4double GetPomInelProbability(const G4double s, const G4double imp2) {return GetPomDiffProbability(s,imp2) + GetPomAbsProbability(s,imp2);} G4double GetCutPomProbability(const G4double s, const G4double ip2, const G4int nPom); G4double GetCutQexProbability(const G4double s, const G4double ip2, const G4int nQex); private: void InitForNucleon(); void InitForHyperon(); void InitForAntiBaryon(); void InitForPion(); void InitForKaon(); void InitForGamma(); G4double Expand(G4double z); G4double PowerQex(const G4double s) {return qex_Gamma/(s/S0);} // qex_Alpha=0 (anti-p?) G4double PowerPom(const G4double s) {return pom_Gamma*std::pow(s/S0, pom_Alpha-1.);} G4double SigQex(const G4double s) {return 8*pi*hbarc_squared*PowerQex(s);} G4double SigPom(const G4double s) {return 8*pi*hbarc_squared*PowerPom(s);} G4double LambdaQex(const G4double s) {return qex_R2+qex_Alphaprime*std::log(s/S0);} G4double LambdaPom(const G4double s) {return pom_R2+pom_Alphaprime*std::log(s/S0);} G4double ZQex(const G4double s) {return 2*PowerQex(s)/LambdaQex(s);} // qex_C=1. G4double ZPom(const G4double s) {return 2*pom_C*PowerPom(s)/LambdaPom(s);} G4double QexEikonal(const G4double s, const G4double imp2) {return ZQex(s)*std::exp(-imp2/LambdaQex(s)/hbarc_squared/4)/2;} G4double PomEikonal(G4double s, G4double imp2) {return ZPom(s)*std::exp(-imp2/LambdaPom(s)/hbarc_squared/4)/2;} // Body G4double S0; G4double pom_Gamma; G4double pom_C; G4double pom_sqC; G4double pom_R2; G4double pom_Alpha; G4double pom_Alphaprime; G4double qex_Gamma; G4double qex_R2; G4double qex_Alphaprime; }; #endif