// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4VAtomDeexcitation.hh,v 1.9 2011-01-03 19:34:03 vnivanch Exp $ // GEANT4 tag $Name: not supported by cvs2svn $ // // ------------------------------------------------------------------- // // GEANT4 Class header file // // // File name: G4VAtomDeexcitation // // Author: Alfonso Mantero & Vladimir Ivanchenko // // Creation date: 30.06.2009 // // Modifications: // 15 Mar 2011 ALF stripped G4AtomicShellEnumerator to its own file // // Class Description: // // Abstract interface to energy loss models // ------------------------------------------------------------------- // #ifndef G4VAtomDeexcitation_h #define G4VAtomDeexcitation_h 1 #include "globals.hh" #include "G4AtomicShell.hh" #include "G4AtomicShellEnumerator.hh" #include "G4ProductionCutsTable.hh" #include "G4Track.hh" #include class G4ParticleDefinition; class G4DynamicParticle; class G4MaterialCutsCouple; class G4VAtomDeexcitation { public: G4VAtomDeexcitation(const G4String& modname = "Deexcitation", const G4String& pixename = ""); virtual ~G4VAtomDeexcitation(); //========== initialization ========== // Overall initialisation before new run void InitialiseAtomicDeexcitation(); // Initialisation of deexcitation at the beginning of run virtual void InitialiseForNewRun() = 0; // Initialisation for a concrete atom // May be called at run time virtual void InitialiseForExtraAtom(G4int Z) = 0; // Activation of deexcitation per detector region void SetDeexcitationActiveRegion(const G4String& rname = "", G4bool valDeexcitation = true, G4bool valAuger = false, G4bool valPIXE = true); // Activation of deexcitation inline void SetFluo(G4bool); inline G4bool IsFluoActive() const; // Activation of Auger electron production inline void SetAuger(G4bool); inline G4bool IsAugerActive() const; // Activation of PIXE simulation inline void SetPIXE(G4bool); // inline void SetPIXEActive(G4bool); inline G4bool IsPIXEActive() const; // Deexcitation model name inline const G4String& GetName() const; // PIXE model name inline void SetPIXECrossSectionModel(const G4String&); inline const G4String& PIXECrossSectionModel() const; // PIXE model name for e+e- inline void SetPIXEElectronCrossSectionModel(const G4String&); inline const G4String& PIXEElectronCrossSectionModel() const; // Access to the list of atoms active for deexcitation inline const std::vector& GetListOfActiveAtoms() const; // Verbosity level inline void SetVerboseLevel(G4int); inline G4int GetVerboseLevel() const; //========== Run time methods ========== // Check if deexcitation is active for a given geometry volume inline G4bool CheckDeexcitationActiveRegion(G4int coupleIndex); inline G4bool CheckAugerActiveRegion(G4int coupleIndex); // Get atomic shell by shell index, used by discrete processes // (for example, photoelectric), when shell vacancy sampled by the model virtual const G4AtomicShell* GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell) = 0; // generation of deexcitation for given atom and shell vacancy inline void GenerateParticles(std::vector* secVect, const G4AtomicShell*, G4int Z, G4int coupleIndex); // generation of deexcitation for given atom and shell vacancy virtual void GenerateParticles(std::vector* secVect, const G4AtomicShell*, G4int Z, G4double gammaCut, G4double eCut) = 0; // access or compute PIXE cross section virtual G4double GetShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, G4int Z, G4AtomicShellEnumerator shell, G4double kinE, const G4Material* mat = 0) = 0; // access or compute PIXE cross section virtual G4double ComputeShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, G4int Z, G4AtomicShellEnumerator shell, G4double kinE, const G4Material* mat = 0) = 0; // Sampling of PIXE for ionisation processes void AlongStepDeexcitation(std::vector& tracks, const G4Step& step, G4double& eLoss, G4int coupleIndex); private: // copy constructor and hide assignment operator G4VAtomDeexcitation(G4VAtomDeexcitation &); G4VAtomDeexcitation & operator=(const G4VAtomDeexcitation &right); G4ProductionCutsTable* theCoupleTable; G4double lowestKinEnergy; G4int verbose; G4String name; G4String namePIXE; G4String nameElectronPIXE; G4bool isActive; G4bool flagAuger; G4bool flagPIXE; std::vector activeZ; std::vector activeDeexcitationMedia; std::vector activeAugerMedia; std::vector activePIXEMedia; std::vector activeRegions; std::vector deRegions; std::vector AugerRegions; std::vector PIXERegions; std::vector vdyn; }; inline void G4VAtomDeexcitation::SetFluo(G4bool val) { isActive = val; } inline G4bool G4VAtomDeexcitation::IsFluoActive() const { return isActive; } inline void G4VAtomDeexcitation::SetAuger(G4bool val) { flagAuger = val; if(val) { isActive = true; } } inline G4bool G4VAtomDeexcitation::IsAugerActive() const { return flagAuger; } inline void G4VAtomDeexcitation::SetPIXE(G4bool val) { flagPIXE = val; if(val) { isActive = true; } } inline G4bool G4VAtomDeexcitation::IsPIXEActive() const { return (flagPIXE && isActive); } inline const G4String& G4VAtomDeexcitation::GetName() const { return name; } inline void G4VAtomDeexcitation::SetPIXECrossSectionModel(const G4String& n) { namePIXE = n; } inline void G4VAtomDeexcitation::SetPIXEElectronCrossSectionModel(const G4String& n) { nameElectronPIXE = n; } inline const G4String& G4VAtomDeexcitation::PIXECrossSectionModel() const { return namePIXE; } inline const G4String& G4VAtomDeexcitation::PIXEElectronCrossSectionModel() const { return nameElectronPIXE; } inline const std::vector& G4VAtomDeexcitation::GetListOfActiveAtoms() const { return activeZ; } inline void G4VAtomDeexcitation::SetVerboseLevel(G4int val) { verbose = val; } inline G4int G4VAtomDeexcitation::GetVerboseLevel() const { return verbose; } inline G4bool G4VAtomDeexcitation::CheckDeexcitationActiveRegion(G4int coupleIndex) { return (isActive && activeDeexcitationMedia[coupleIndex]); } inline G4bool G4VAtomDeexcitation::CheckAugerActiveRegion(G4int coupleIndex) { return (flagAuger && activeAugerMedia[coupleIndex]); } inline void G4VAtomDeexcitation::GenerateParticles(std::vector* v, const G4AtomicShell* as, G4int Z, G4int idx) { G4double gCut = DBL_MAX; if (theCoupleTable) { gCut = (*(theCoupleTable->GetEnergyCutsVector(0)))[idx]; } if(gCut < as->BindingEnergy()) { G4double eCut = DBL_MAX; if(CheckAugerActiveRegion(idx)) { if (theCoupleTable) { eCut = (*(theCoupleTable->GetEnergyCutsVector(1)))[idx]; } } GenerateParticles(v, as, Z, gCut, eCut); } } #endif