/* specfunc/beta_inc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Modified for cdfs by Brian Gough, June 2003 */ #include <gsl/gsl_sf_gamma.h> static double beta_cont_frac (const double a, const double b, const double x, const double epsabs) { const unsigned int max_iter = 512; /* control iterations */ const double cutoff = 2.0 * GSL_DBL_MIN; /* control the zero cutoff */ unsigned int iter_count = 0; double cf; /* standard initialization for continued fraction */ double num_term = 1.0; double den_term = 1.0 - (a + b) * x / (a + 1.0); if (fabs (den_term) < cutoff) den_term = GSL_NAN; den_term = 1.0 / den_term; cf = den_term; while (iter_count < max_iter) { const int k = iter_count + 1; double coeff = k * (b - k) * x / (((a - 1.0) + 2 * k) * (a + 2 * k)); double delta_frac; /* first step */ den_term = 1.0 + coeff * den_term; num_term = 1.0 + coeff / num_term; if (fabs (den_term) < cutoff) den_term = GSL_NAN; if (fabs (num_term) < cutoff) num_term = GSL_NAN; den_term = 1.0 / den_term; delta_frac = den_term * num_term; cf *= delta_frac; coeff = -(a + k) * (a + b + k) * x / ((a + 2 * k) * (a + 2 * k + 1.0)); /* second step */ den_term = 1.0 + coeff * den_term; num_term = 1.0 + coeff / num_term; if (fabs (den_term) < cutoff) den_term = GSL_NAN; if (fabs (num_term) < cutoff) num_term = GSL_NAN; den_term = 1.0 / den_term; delta_frac = den_term * num_term; cf *= delta_frac; if (fabs (delta_frac - 1.0) < 2.0 * GSL_DBL_EPSILON) break; if (cf * fabs (delta_frac - 1.0) < epsabs) break; ++iter_count; } if (iter_count >= max_iter) return GSL_NAN; return cf; } /* The function beta_inc_AXPY(A,Y,a,b,x) computes A * beta_inc(a,b,x) + Y taking account of possible cancellations when using the hypergeometric transformation beta_inc(a,b,x)=1-beta_inc(b,a,1-x). It also adjusts the accuracy of beta_inc() to fit the overall absolute error when A*beta_inc is added to Y. (e.g. if Y >> A*beta_inc then the accuracy of beta_inc can be reduced) */ static double beta_inc_AXPY (const double A, const double Y, const double a, const double b, const double x) { if (x == 0.0) { return A * 0 + Y; } else if (x == 1.0) { return A * 1 + Y; } else if (a > 1e5 && b < 10 && x > a / (a + b)) { /* Handle asymptotic regime, large a, small b, x > peak [AS 26.5.17] */ double N = a + (b - 1.0) / 2.0; return A * gsl_sf_gamma_inc_Q (b, -N * log (x)) + Y; } else if (b > 1e5 && a < 10 && x < b / (a + b)) { /* Handle asymptotic regime, small a, large b, x < peak [AS 26.5.17] */ double N = b + (a - 1.0) / 2.0; return A * gsl_sf_gamma_inc_P (a, -N * log1p (-x)) + Y; } else { double ln_beta = gsl_sf_lnbeta (a, b); double ln_pre = -ln_beta + a * log (x) + b * log1p (-x); double prefactor = exp (ln_pre); if (x < (a + 1.0) / (a + b + 2.0)) { /* Apply continued fraction directly. */ double epsabs = fabs (Y / (A * prefactor / a)) * GSL_DBL_EPSILON; double cf = beta_cont_frac (a, b, x, epsabs); return A * (prefactor * cf / a) + Y; } else { /* Apply continued fraction after hypergeometric transformation. */ double epsabs = fabs ((A + Y) / (A * prefactor / b)) * GSL_DBL_EPSILON; double cf = beta_cont_frac (b, a, 1.0 - x, epsabs); double term = prefactor * cf / b; if (A == -Y) { return -A * term; } else { return A * (1 - term) + Y; } } } } /* Direct series evaluation for testing purposes only */ #if 0 static double beta_series (const double a, const double b, const double x, const double epsabs) { double f = x / (1 - x); double c = (b - 1) / (a + 1) * f; double s = 1; double n = 0; s += c; do { n++; c *= -f * (2 + n - b) / (2 + n + a); s += c; } while (n < 512 && fabs (c) > GSL_DBL_EPSILON * fabs (s) + epsabs); s /= (1 - x); return s; } #endif