# This file is part of MAUS: http://micewww.pp.rl.ac.uk:8080/projects/maus # # MAUS is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # MAUS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with MAUS. If not, see . """Tests for MapCppEMRRecon""" import os import json import unittest from Configuration import Configuration import MAUS import maus_cpp.converter class TestMapCppEMRRecon(unittest.TestCase): #pylint: disable=R0904 """Tests for MapCppEMRRecon""" @classmethod def setUpClass(cls): # pylint: disable = C0103 """Sets a mapper and configuration""" cls.mapper = MAUS.MapCppEMRRecon() cls.c = Configuration() def test_empty(self): """Check can handle empty configuration""" self.assertRaises(ValueError, self.mapper.birth, "") result = self.mapper.process("") doc = maus_cpp.converter.json_repr(result) self.assertTrue("errors" in doc) self.assertTrue("MapCppEMRRecon" in doc["errors"]) def test_init(self): """Check birth with default configuration""" test_configuration = self.c.getConfigJSON() test_conf_json = json.loads(test_configuration) # Fix the calibration to be always step I (prevents update issues) test_conf_json['EMR_calib_source'] = "file" test_conf_json['EMR_calib_file'] = \ "/files/calibration/emrcalib_cosmics_july2015.txt" test_conf = json.dumps(test_conf_json) self.mapper.birth(test_conf) def test_no_data(self): """Check that nothing happens in absence of data""" test1 = ('%s/src/map/MapCppEMRRecon/noDataTest.json' % os.environ.get("MAUS_ROOT_DIR")) fin = open(test1,'r') data = fin.read() # test with no data. result = self.mapper.process(data) spill_out = maus_cpp.converter.json_repr(result) self.assertFalse("MapCppEMRRecon" in spill_out["errors"]) n_ev = len(spill_out['recon_events']) self.assertEqual(0, n_ev) def test_process(self): """Test MapCppEMRRecon process method""" test2 = ('%s/src/map/MapCppEMRRecon/processTest.json' % os.environ.get("MAUS_ROOT_DIR")) fin = open(test2,'r') data = fin.read() # test with a mu+ and its decay product e+ result = self.mapper.process(data) spill_out = maus_cpp.converter.json_repr(result) self.assertFalse("MapCppEMRRecon" in spill_out["errors"]) # consistent amount of reconEvents (2 = empty + muon and its decay) self.assertEqual(2, len(spill_out['recon_events'])) # check that the first event contains 40 space points, second is empty self.assertEqual(40, len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['space_points'])) self.assertEqual(0, len(spill_out['recon_events'][1]['emr_event']\ ['event_tracks'])) # check that the density is reconstructed and consistent for the mother self.assertEqual(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['plane_density_ma'], 1.) self.assertEqual(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['plane_density_sa'], 1.) # check that the event charge and charge ratio are reconstructed self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['total_charge_ma'] > 1000) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['total_charge_sa'] > 1000) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['charge_ratio_ma'] < .5) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['charge_ratio_sa'] < .5) # check the fitting paremeters are reconstructed and the chi^2 self.assertTrue(2, spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['parx']) self.assertTrue(2, spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['pary']) chi2 = spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['chi2'] chi2 /= (len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['track_points'])-5) self.assertTrue(chi2 < 2) # check that we have have 1 track point per SP + the origin (40+1) self.assertEqual(41, len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']\ ['track_points'])) for i in range(0, 41): self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']\ ['track_points'][i]['resx'] < 17) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']\ ['track_points'][i]['resy'] < 17) # check that the range and momentum are good (MC truth = 194 Mev/c) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['range'] > 300) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['range'] < 500) mom_truth = spill_out['mc_events'][0]['primary']['momentum']['z'] self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['mom'] > mom_truth-5) self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][0]['track']['mom'] < mom_truth+5) # check that the electron has been matched to the muon self.assertEqual(len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks']), 2) # check that it contains everything n_planes = len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][1]['plane_hits']) self.assertEqual(n_planes, 3) n_bars = 0 for i in range(0, n_planes): n_bars = n_bars + len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][1]['plane_hits']\ [i]['bar_hits']) self.assertEqual(n_planes, 3) self.assertEqual(len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][1]['space_points']),\ n_bars) self.assertEqual(len(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][1]['track']\ ['track_points']), n_bars) # check that the positron momentum is consitent with a Michel electron self.assertTrue(spill_out['recon_events'][0]['emr_event']\ ['event_tracks'][1]['track']['mom'] < 55) if __name__ == "__main__": unittest.main()