/* roots/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <stdlib.h> #include <gsl/gsl_math.h> #include <gsl/gsl_test.h> #include <gsl/gsl_roots.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_ieee_utils.h> #include "roots.h" #include "test.h" /* stopping parameters */ const double EPSREL = (10 * GSL_DBL_EPSILON); const double EPSABS = (10 * GSL_DBL_EPSILON); const unsigned int MAX_ITERATIONS = 150; void my_error_handler (const char *reason, const char *file, int line, int err); #define WITHIN_TOL(a, b, epsrel, epsabs) \ ((fabs((a) - (b)) < (epsrel) * GSL_MIN(fabs(a), fabs(b)) + (epsabs))) int main (void) { gsl_function F_sin, F_cos, F_func1, F_func2, F_func3, F_func4, F_func5, F_func6; gsl_function_fdf FDF_sin, FDF_cos, FDF_func1, FDF_func2, FDF_func3, FDF_func4, FDF_func5, FDF_func6; const gsl_root_fsolver_type * fsolver[4] ; const gsl_root_fdfsolver_type * fdfsolver[4] ; const gsl_root_fsolver_type ** T; const gsl_root_fdfsolver_type ** S; gsl_ieee_env_setup(); fsolver[0] = gsl_root_fsolver_bisection; fsolver[1] = gsl_root_fsolver_brent; fsolver[2] = gsl_root_fsolver_falsepos; fsolver[3] = 0; fdfsolver[0] = gsl_root_fdfsolver_newton; fdfsolver[1] = gsl_root_fdfsolver_secant; fdfsolver[2] = gsl_root_fdfsolver_steffenson; fdfsolver[3] = 0; F_sin = create_function (sin_f) ; F_cos = create_function (cos_f) ; F_func1 = create_function (func1) ; F_func2 = create_function (func2) ; F_func3 = create_function (func3) ; F_func4 = create_function (func4) ; F_func5 = create_function (func5) ; F_func6 = create_function (func6) ; FDF_sin = create_fdf (sin_f, sin_df, sin_fdf) ; FDF_cos = create_fdf (cos_f, cos_df, cos_fdf) ; FDF_func1 = create_fdf (func1, func1_df, func1_fdf) ; FDF_func2 = create_fdf (func2, func2_df, func2_fdf) ; FDF_func3 = create_fdf (func3, func3_df, func3_fdf) ; FDF_func4 = create_fdf (func4, func4_df, func4_fdf) ; FDF_func5 = create_fdf (func5, func5_df, func5_fdf) ; FDF_func6 = create_fdf (func6, func6_df, func6_fdf) ; gsl_set_error_handler (&my_error_handler); for (T = fsolver ; *T != 0 ; T++) { test_f (*T, "sin(x) [3, 4]", &F_sin, 3.0, 4.0, M_PI); test_f (*T, "sin(x) [-4, -3]", &F_sin, -4.0, -3.0, -M_PI); test_f (*T, "sin(x) [-1/3, 1]", &F_sin, -1.0 / 3.0, 1.0, 0.0); test_f (*T, "cos(x) [0, 3]", &F_cos, 0.0, 3.0, M_PI / 2.0); test_f (*T, "cos(x) [-3, 0]", &F_cos, -3.0, 0.0, -M_PI / 2.0); test_f (*T, "x^20 - 1 [0.1, 2]", &F_func1, 0.1, 2.0, 1.0); test_f (*T, "sqrt(|x|)*sgn(x)", &F_func2, -1.0 / 3.0, 1.0, 0.0); test_f (*T, "x^2 - 1e-8 [0, 1]", &F_func3, 0.0, 1.0, sqrt (1e-8)); test_f (*T, "x exp(-x) [-1/3, 2]", &F_func4, -1.0 / 3.0, 2.0, 0.0); test_f (*T, "(x - 1)^7 [0.9995, 1.0002]", &F_func6, 0.9995, 1.0002, 1.0); test_f_e (*T, "invalid range check [4, 0]", &F_sin, 4.0, 0.0, M_PI); test_f_e (*T, "invalid range check [1, 1]", &F_sin, 1.0, 1.0, M_PI); test_f_e (*T, "invalid range check [0.1, 0.2]", &F_sin, 0.1, 0.2, M_PI); } for (S = fdfsolver ; *S != 0 ; S++) { test_fdf (*S,"sin(x) {3.4}", &FDF_sin, 3.4, M_PI); test_fdf (*S,"sin(x) {-3.3}", &FDF_sin, -3.3, -M_PI); test_fdf (*S,"sin(x) {0.5}", &FDF_sin, 0.5, 0.0); test_fdf (*S,"cos(x) {0.6}", &FDF_cos, 0.6, M_PI / 2.0); test_fdf (*S,"cos(x) {-2.5}", &FDF_cos, -2.5, -M_PI / 2.0); test_fdf (*S,"x^{20} - 1 {0.9}", &FDF_func1, 0.9, 1.0); test_fdf (*S,"x^{20} - 1 {1.1}", &FDF_func1, 1.1, 1.0); test_fdf (*S,"sqrt(|x|)*sgn(x) {1.001}", &FDF_func2, 0.001, 0.0); test_fdf (*S,"x^2 - 1e-8 {1}", &FDF_func3, 1.0, sqrt (1e-8)); test_fdf (*S,"x exp(-x) {-2}", &FDF_func4, -2.0, 0.0); test_fdf_e (*S,"max iterations x -> +Inf, x exp(-x) {2}", &FDF_func4, 2.0, 0.0); test_fdf_e (*S,"max iterations x -> -Inf, 1/(1 + exp(-x)) {0}", &FDF_func5, 0.0, 0.0); } test_fdf (gsl_root_fdfsolver_steffenson, "(x - 1)^7 {0.9}", &FDF_func6, 0.9, 1.0); /* now summarize the results */ exit (gsl_test_summary ()); } /* Using gsl_root_bisection, find the root of the function pointed to by f, using the interval [lower_bound, upper_bound]. Check if f succeeded and that it was accurate enough. */ void test_f (const gsl_root_fsolver_type * T, const char * description, gsl_function *f, double lower_bound, double upper_bound, double correct_root) { int status; size_t iterations = 0; double r, a, b; double x_lower, x_upper; gsl_root_fsolver * s; x_lower = lower_bound; x_upper = upper_bound; s = gsl_root_fsolver_alloc(T); gsl_root_fsolver_set(s, f, x_lower, x_upper) ; do { iterations++ ; gsl_root_fsolver_iterate (s); r = gsl_root_fsolver_root(s); a = gsl_root_fsolver_x_lower(s); b = gsl_root_fsolver_x_upper(s); if (a > b) gsl_test (GSL_FAILURE, "interval is invalid (%g,%g)", a, b); if (r < a || r > b) gsl_test (GSL_FAILURE, "r lies outside interval %g (%g,%g)", r, a, b); status = gsl_root_test_interval (a,b, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (status, "%s, %s (%g obs vs %g expected) ", gsl_root_fsolver_name(s), description, gsl_root_fsolver_root(s), correct_root); if (iterations == MAX_ITERATIONS) { gsl_test (GSL_FAILURE, "exceeded maximum number of iterations"); } /* check the validity of the returned result */ if (!WITHIN_TOL (r, correct_root, EPSREL, EPSABS)) { gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)", r, correct_root); } gsl_root_fsolver_free(s); } void test_f_e (const gsl_root_fsolver_type * T, const char * description, gsl_function *f, double lower_bound, double upper_bound, double correct_root) { int status; size_t iterations = 0; double x_lower, x_upper; gsl_root_fsolver * s; x_lower = lower_bound; x_upper = upper_bound; s = gsl_root_fsolver_alloc(T); status = gsl_root_fsolver_set(s, f, x_lower, x_upper) ; gsl_test (status != GSL_EINVAL, "%s (set), %s", T->name, description); if (status == GSL_EINVAL) { gsl_root_fsolver_free(s); return ; } do { iterations++ ; gsl_root_fsolver_iterate (s); x_lower = gsl_root_fsolver_x_lower(s); x_upper = gsl_root_fsolver_x_lower(s); status = gsl_root_test_interval (x_lower, x_upper, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (!status, "%s, %s", gsl_root_fsolver_name(s), description, gsl_root_fsolver_root(s) - correct_root); gsl_root_fsolver_free(s); } void test_fdf (const gsl_root_fdfsolver_type * T, const char * description, gsl_function_fdf *fdf, double root, double correct_root) { int status; size_t iterations = 0; double prev = 0 ; gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc(T); gsl_root_fdfsolver_set (s, fdf, root) ; do { iterations++ ; prev = gsl_root_fdfsolver_root(s); gsl_root_fdfsolver_iterate (s); status = gsl_root_test_delta(gsl_root_fdfsolver_root(s), prev, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (status, "%s, %s (%g obs vs %g expected) ", gsl_root_fdfsolver_name(s), description, gsl_root_fdfsolver_root(s), correct_root); if (iterations == MAX_ITERATIONS) { gsl_test (GSL_FAILURE, "exceeded maximum number of iterations"); } /* check the validity of the returned result */ if (!WITHIN_TOL (gsl_root_fdfsolver_root(s), correct_root, EPSREL, EPSABS)) { gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)", gsl_root_fdfsolver_root(s), correct_root); } gsl_root_fdfsolver_free(s); } void test_fdf_e (const gsl_root_fdfsolver_type * T, const char * description, gsl_function_fdf *fdf, double root, double correct_root) { int status; size_t iterations = 0; double prev = 0 ; gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc(T); status = gsl_root_fdfsolver_set (s, fdf, root) ; gsl_test (status, "%s (set), %s", T->name, description); do { iterations++ ; prev = gsl_root_fdfsolver_root(s); gsl_root_fdfsolver_iterate (s); status = gsl_root_test_delta(gsl_root_fdfsolver_root(s), prev, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (!status, "%s, %s", gsl_root_fdfsolver_name(s), description, gsl_root_fdfsolver_root(s) - correct_root); gsl_root_fdfsolver_free(s); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); }