// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id$ // ///////////////////////////////////////////////////////////////////////////////// // Class Name: G4AdjointSimManager.hh // Author: L. Desorgher // Organisation: SpaceIT GmbH // Contract: ESA contract 21435/08/NL/AT // Customer: ESA/ESTEC ///////////////////////////////////////////////////////////////////////////////// // // CHANGE HISTORY // -------------- // ChangeHistory: // -15-01-2007 creation by L. Desorgher // -March 2008 Redesigned as a non RunManager. L. Desorgher // -01-11-2009 Add the possibility to use user defined run, event, tracking, stepping, // and stacking actions during the adjoint tracking phase. L. Desorgher // // // //------------------------------------------------------------- // Documentation: // This class represents the Manager of an adjoint/reverse MC simulation. // An adjoint run is divided in a serie of alternative adjoint and forward tracking // of adjoint and normal particles. // // Reverse tracking phase: // ----------------------- // An adjoint particle of a given type (adjoint_e-, adjoint_gamma,...) is first generated on the so called adjoint source // with a random energy (1/E distribution) and direction. The adjoint source is the // external surface of a user defined volume or of a user defined sphere. The adjoint // source should contain one or several sensitive volumes and should be small // compared to the entire geometry. // The user can set the min and max energy of the adjoint source. After its // generation the adjoint primary particle is tracked // bacward in the geometry till a user defined external surface (spherical or boundary of a volume) // or is killed before if it reaches a user defined upper energy limit that represents // the maximum energy of the external source. During the reverse tracking, reverse // processes take place where the adjoint particle being tracked can be either scattered // or transformed in another type of adjoint paticle. During the reverse tracking the // G4SimulationManager replaces the user defined Primary, Run, ... actions, by its own actions. // // Forward tracking phase // ----------------------- // When an adjoint particle reaches the external surface its weight,type, position, // and directions are registered and a normal primary particle with a type equivalent to the last generated primary adjoint is // generated with the same energy, position but opposite direction and is tracked normally in the sensitive region as in a fwd MC simulation. // During this forward tracking phase the // event, stacking, stepping, tracking actions defined by the user for its general fwd application are used. By this clear separation between // adjoint and fwd tracking phases , the code of the user developed for a fwd simulation should be only slightly modified to adapt it for an adjoint // simulation. Indeed the computation of the signal is done by the same actions or classes that the one used in the fwd simulation mode. // // Modification to brought in a existing G4 application to use the ReverseMC method // ------------------------------- // In order to be able to use the ReverseMC method in his simulation, the user should modify its code as such: // 1) Adapt its physics list to use ReverseProcesses for adjoint particles. An example of such physics list is provided in an extended // example. // 2) Create an instance of G4AdjointSimManager somewhere in the main code. // 3) Modify the analysis part of the code to normalise the signal computed during the fwd phase to the weight of the last adjoint particle // that reaches the external surface. This is done by using the following method of G4AdjointSimManager. // // G4int GetIDOfLastAdjParticleReachingExtSource() // G4ThreeVector GetPositionAtEndOfLastAdjointTrack(){ return last_pos;} // G4ThreeVector GetDirectionAtEndOfLastAdjointTrack(){ return last_direction;} // G4double GetEkinAtEndOfLastAdjointTrack(){ return last_ekin;} // G4double GetEkinNucAtEndOfLastAdjointTrack(){ return last_ekin_nuc;} // G4double GetWeightAtEndOfLastAdjointTrack(){return last_weight;} // G4double GetCosthAtEndOfLastAdjointTrack(){return last_cos_th;} // G4String GetFwdParticleNameAtEndOfLastAdjointTrack(){return last_fwd_part_name;} // G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack(){return last_fwd_part_PDGEncoding;} // G4int GetFwdParticleIndexAtEndOfLastAdjointTrack(). // // In orther to have a code working for both forward and adjoint simulation mode, the extra code needed in user actions for the adjoint // simulation mode can be seperated to the code needed only for the normal forward simulation by using the following method // // G4bool GetAdjointSimMode() that return true if an adjoint simulation is running and false if not! // // Example of modification in the analysis part of the code: // ------------------------------------------------------------- // Let say that in the forward simulation a G4 application computes the energy deposited in a volume. // The user wants to normalise its results for an external isotropic source of e- with differential spectrum given by f(E). // A possible modification of the code where the deposited energy Edep during an event is registered would be the following // // G4AdjointSimManager* theAdjSimManager = G4AdjointSimManager::GetInstance(); // if (theAdjSimManager->GetAdjointSimMode()) { // //code of the user that should be consider only for forwrad simulation // G4double normalised_edep = 0.; // if (theAdjSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack() == "e-"){ // G4double ekin_prim = theAdjSimManager->GetEkinAtEndOfLastAdjointTrack(); // G4double weight_prim = theAdjSimManager->GetWeightAtEndOfLastAdjointTrack(); // normalised_edep = weight_prim*f(ekin_prim); // } // //then follow the code where normalised_edep is printed, or registered or whatever .... // } // // else { //code of the user that should be consider only for forward simulation // } // Note that in this example a normalisation to only primary e- with only one spectrum f(E) is considered. The example code could be easily // adapted for a normalisatin to several spectra and several type of primary particles in the same simulation. // #ifndef G4AdjointSimManager_h #define G4AdjointSimManager_h 1 #include "globals.hh" #include "G4ThreeVector.hh" #include class G4UserEventAction; class G4VUserPrimaryGeneratorAction; class G4UserTrackingAction; class G4UserSteppingAction; class G4UserStackingAction; class G4UserRunAction; class G4AdjointRunAction; class G4AdjointPrimaryGeneratorAction; class G4AdjointSteppingAction; class G4AdjointEventAction; class G4AdjointStackingAction; class G4ParticleDefinition; class G4AdjointSimMessenger; class G4PhysicsLogVector; class G4AdjointSimManager { public: static G4AdjointSimManager* GetInstance(); public: //publich methods void RunAdjointSimulation(G4int nb_evt); inline G4int GetNbEvtOfLastRun(){return nb_evt_of_last_run;} void SetAdjointTrackingMode(G4bool aBool); inline G4bool GetAdjointTrackingMode(){return adjoint_tracking_mode;} //true if an adjoint track is being processed inline G4bool GetAdjointSimMode(){return adjoint_sim_mode;} //true if an adjoint simulation is running G4bool GetDidAdjParticleReachTheExtSource(); void RegisterAtEndOfAdjointTrack(); void RegisterAdjointPrimaryWeight(G4double aWeight); inline G4int GetIDOfLastAdjParticleReachingExtSource(){return ID_of_last_particle_that_reach_the_ext_source;}; inline G4ThreeVector GetPositionAtEndOfLastAdjointTrack(){ return last_pos;} inline G4ThreeVector GetDirectionAtEndOfLastAdjointTrack(){ return last_direction;} inline G4double GetEkinAtEndOfLastAdjointTrack(){ return last_ekin;} inline G4double GetEkinNucAtEndOfLastAdjointTrack(){ return last_ekin_nuc;} inline G4double GetWeightAtEndOfLastAdjointTrack(){return last_weight;} inline G4double GetCosthAtEndOfLastAdjointTrack(){return last_cos_th;} inline const G4String& GetFwdParticleNameAtEndOfLastAdjointTrack(){return last_fwd_part_name;} inline G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack(){return last_fwd_part_PDGEncoding;} inline G4int GetFwdParticleIndexAtEndOfLastAdjointTrack(){return last_fwd_part_index;} std::vector GetListOfPrimaryFwdParticles(); G4bool DefineSphericalExtSource(G4double radius, G4ThreeVector pos); G4bool DefineSphericalExtSourceWithCentreAtTheCentreOfAVolume(G4double radius, const G4String& volume_name); G4bool DefineExtSourceOnTheExtSurfaceOfAVolume(const G4String& volume_name); void SetExtSourceEmax(G4double Emax); //Definition of adjoint source //---------------------------- G4bool DefineSphericalAdjointSource(G4double radius, G4ThreeVector pos); G4bool DefineSphericalAdjointSourceWithCentreAtTheCentreOfAVolume(G4double radius, const G4String& volume_name); G4bool DefineAdjointSourceOnTheExtSurfaceOfAVolume(const G4String& volume_name); void SetAdjointSourceEmin(G4double Emin); void SetAdjointSourceEmax(G4double Emax); inline G4double GetAdjointSourceArea(){return area_of_the_adjoint_source;} void ConsiderParticleAsPrimary(const G4String& particle_name); void NeglectParticleAsPrimary(const G4String& particle_name); void SetPrimaryIon(G4ParticleDefinition* adjointIon, G4ParticleDefinition* fwdIon); const G4String& GetPrimaryIonName(); inline void SetNormalisationMode(G4int n){normalisation_mode=n;}; G4int GetNormalisationMode(){return normalisation_mode;}; G4double GetNumberNucleonsInIon(){return nb_nuc;}; //Definition of user actions for the adjoint tracking phase //---------------------------- void SetAdjointEventAction(G4UserEventAction* anAction); void SetAdjointSteppingAction(G4UserSteppingAction* anAction); void SetAdjointStackingAction(G4UserStackingAction* anAction); void SetAdjointTrackingAction(G4UserTrackingAction* anAction); void SetAdjointRunAction(G4UserRunAction* anAction); //Set methods for user run actions //-------------------------------- inline void UseUserStackingActionInFwdTrackingPhase(G4bool aBool){use_user_StackingAction=aBool;} //Convergence test //----------------------- /* void RegisterSignalForConvergenceTest(G4double aSignal); void DefineExponentialPrimarySpectrumForConvergenceTest(G4ParticleDefinition* aPartDef, G4double E0); void DefinePowerLawPrimarySpectrumForConvergenceTest(G4ParticleDefinition* aPartDef, G4double alpha); */ private: static G4AdjointSimManager* instance; private: // methods void SetRestOfAdjointActions(); void SetAdjointPrimaryRunAndStackingActions(); void ResetRestOfUserActions(); void ResetUserPrimaryRunAndStackingActions(); void DefineUserActions(); private: //constructor and destructor G4AdjointSimManager(); ~G4AdjointSimManager(); private ://attributes //Messenger //---------- G4AdjointSimMessenger* theMessenger; //user defined actions for the normal fwd simulation. Taken from the G4RunManager //------------------------------------------------- bool user_action_already_defined; G4UserRunAction* fUserRunAction; G4UserEventAction* fUserEventAction; G4VUserPrimaryGeneratorAction* fUserPrimaryGeneratorAction; G4UserTrackingAction* fUserTrackingAction; G4UserSteppingAction* fUserSteppingAction; G4UserStackingAction* fUserStackingAction; bool use_user_StackingAction; //only for fwd part of the adjoint simulation //action for adjoint simulation //----------------------------- G4UserRunAction* theAdjointRunAction; G4UserEventAction* theAdjointEventAction; G4AdjointPrimaryGeneratorAction* theAdjointPrimaryGeneratorAction; G4UserTrackingAction* theAdjointTrackingAction; G4AdjointSteppingAction* theAdjointSteppingAction; G4AdjointStackingAction* theAdjointStackingAction; //adjoint mode //------------- G4bool adjoint_tracking_mode; G4bool adjoint_sim_mode; //adjoint particle information on the external surface //----------------------------- G4ThreeVector last_pos; G4ThreeVector last_direction; G4double last_ekin,last_ekin_nuc; //last_ekin_nuc=last_ekin/nuc, nuc is 1 if not a nucleus G4double last_cos_th; G4String last_fwd_part_name; G4int last_fwd_part_PDGEncoding; G4int last_fwd_part_index; G4double last_weight; G4int ID_of_last_particle_that_reach_the_ext_source; G4int nb_evt_of_last_run; G4int normalisation_mode; //Adjoint source //-------------- G4double area_of_the_adjoint_source; G4double nb_nuc; G4double theAdjointPrimaryWeight; //Weight Analysis //---------- G4PhysicsLogVector* electron_last_weight_vector; G4PhysicsLogVector* proton_last_weight_vector; G4PhysicsLogVector* gamma_last_weight_vector; G4bool welcome_message; /* For the future //Convergence test //---------------- G4double normalised_signal; G4double error_signal; G4bool convergence_test_is_used; G4bool power_law_spectrum_for_convergence_test; // true PowerLaw, ; G4ParticleDefinition* the_par_def_for_convergence_test; */ }; #endif