// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id$ // // //J.M. Quesada (August2008). Based on: // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // // 17-11-2010 V.Ivanchenko in constructor replace G4VEmissionProbability by // G4EvaporationProbability and do not new and delete probability // object at each call; use G4Pow #ifndef G4EvaporationChannel_h #define G4EvaporationChannel_h 1 #include "G4VEvaporationChannel.hh" #include "G4EvaporationProbability.hh" #include "G4VCoulombBarrier.hh" class G4EvaporationLevelDensityParameter; class G4EvaporationChannel : public G4VEvaporationChannel { public: // constructor G4EvaporationChannel(G4int theA, G4int theZ, const G4String & aName, G4EvaporationProbability * aEmissionStrategy, G4VCoulombBarrier * aCoulombBarrier); // destructor virtual ~G4EvaporationChannel(); inline void SetEmissionStrategy(G4EvaporationProbability * aEmissionStrategy) {theEvaporationProbabilityPtr = aEmissionStrategy;} inline void SetCoulombBarrierStrategy(G4VCoulombBarrier * aCoulombBarrier) {theCoulombBarrierPtr = aCoulombBarrier;} protected: // default constructor G4EvaporationChannel(); public: // virtual void Initialize(const G4Fragment & fragment); virtual G4double GetEmissionProbability(G4Fragment* fragment); G4FragmentVector * BreakUp(const G4Fragment & theNucleus); inline G4double GetMaximalKineticEnergy(void) const { return MaximalKineticEnergy; } private: // Calculate Binding Energy for separate fragment from nucleus G4double CalcBindingEnergy(G4int anA, G4int aZ); // Calculate maximal kinetic energy that can be carried by fragment (in MeV) G4double CalcMaximalKineticEnergy(G4double U); // Samples fragment kinetic energy. G4double GetKineticEnergy(const G4Fragment & aFragment); // This has to be removed and put in Random Generator G4ThreeVector IsotropicVector(G4double Magnitude = 1.0); G4EvaporationChannel(const G4EvaporationChannel & right); const G4EvaporationChannel & operator=(const G4EvaporationChannel & right); G4bool operator==(const G4EvaporationChannel & right) const; G4bool operator!=(const G4EvaporationChannel & right) const; // Data Members // ************ private: // This data member define the channel. // They are intializated at object creation (constructor) time. // Atomic Number of ejectile G4int theA; // Charge of ejectile G4int theZ; G4double EvaporatedMass; G4double ResidualMass; // For evaporation probability calcualation G4EvaporationProbability * theEvaporationProbabilityPtr; // For Level Density calculation // G4bool MyOwnLevelDensity; G4VLevelDensityParameter * theLevelDensityPtr; // For Coulomb Barrier calculation G4VCoulombBarrier * theCoulombBarrierPtr; G4double CoulombBarrier; //--------------------------------------------------- // These values depend on the nucleus that is being evaporated. // They are calculated through the Initialize method which takes as parameters // the atomic number, charge and excitation energy of nucleus. // Residual Mass Number G4int ResidualA; // Residual Charge G4int ResidualZ; // Emission Probability G4double EmissionProbability; // Maximal Kinetic Energy that can be carried by fragment G4double MaximalKineticEnergy; }; #endif