// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id$ // // ------------------------------------------------------------------- // // GEANT4 Class header file // // G4HadronicProcess // // This is the top level Hadronic Process class // The inelastic, elastic, capture, and fission processes // should derive from this class // // original by H.P.Wellisch // J.L. Chuma, TRIUMF, 10-Mar-1997 // Last modified: 04-Apr-1997 // 19-May-2008 V.Ivanchenko cleanup and added comments // 05-Jul-2010 V.Ivanchenko cleanup commented lines // 28-Jul-2012 M.Maire add function GetTargetDefinition() // 14-Sep-2012 Inherit from RestDiscrete, use subtype code (now in ctor) to // configure base-class // 28-Sep-2012 M. Kelsey -- Undo inheritance change, keep new ctor #ifndef G4HadronicProcess_h #define G4HadronicProcess_h 1 #include "globals.hh" #include "G4VDiscreteProcess.hh" #include "G4EnergyRangeManager.hh" #include "G4Nucleus.hh" #include "G4ReactionProduct.hh" #include #include "G4VCrossSectionDataSet.hh" #include "G4VLeadingParticleBiasing.hh" #include "G4CrossSectionDataStore.hh" #include "G4HadronicProcessType.hh" class G4Track; class G4Step; class G4Element; class G4ParticleChange; class G4HadronicProcess : public G4VDiscreteProcess { public: G4HadronicProcess(const G4String& processName="Hadronic", G4ProcessType procType=fHadronic); // Preferred signature for subclasses, specifying their subtype here G4HadronicProcess(const G4String& processName, G4HadronicProcessType subType); virtual ~G4HadronicProcess(); // register generator of secondaries void RegisterMe(G4HadronicInteraction* a); // get cross section per element inline G4double GetElementCrossSection(const G4DynamicParticle * part, const G4Element * elm, const G4Material* mat = 0) { G4double x = theCrossSectionDataStore->GetCrossSection(part, elm, mat); if(x < 0.0) { x = 0.0; } return x; } // obsolete method to get cross section per element inline G4double GetMicroscopicCrossSection(const G4DynamicParticle * part, const G4Element * elm, const G4Material* mat = 0) { return GetElementCrossSection(part, elm, mat); } // generic PostStepDoIt recommended for all derived classes virtual G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); // initialisation of physics tables and G4HadronicProcessStore virtual void PreparePhysicsTable(const G4ParticleDefinition&); // build physics tables and print out the configuration of the process virtual void BuildPhysicsTable(const G4ParticleDefinition&); // dump physics tables inline void DumpPhysicsTable(const G4ParticleDefinition& p) { theCrossSectionDataStore->DumpPhysicsTable(p); } // add cross section data set inline void AddDataSet(G4VCrossSectionDataSet * aDataSet) { theCrossSectionDataStore->AddDataSet(aDataSet);} // access to the manager inline G4EnergyRangeManager *GetManagerPointer() { return &theEnergyRangeManager; } // get inverse cross section per volume G4double GetMeanFreePath(const G4Track &aTrack, G4double, G4ForceCondition *); // access to the target nucleus inline const G4Nucleus* GetTargetNucleus() const { return &targetNucleus; } // G4ParticleDefinition* GetTargetDefinition(); inline const G4Isotope* GetTargetIsotope() { return targetNucleus.GetIsotope(); } virtual void ProcessDescription(std::ostream& outFile) const; protected: // generic method to choose secondary generator // recommended for all derived classes inline G4HadronicInteraction* ChooseHadronicInteraction( G4double kineticEnergy, G4Material* aMaterial, G4Element* anElement) { return theEnergyRangeManager.GetHadronicInteraction(kineticEnergy, aMaterial,anElement); } // access to the target nucleus inline G4Nucleus* GetTargetNucleusPointer() { return &targetNucleus; } public: void BiasCrossSectionByFactor(G4double aScale); // Energy-momentum non-conservation limits and reporting inline void SetEpReportLevel(G4int level) { epReportLevel = level; } inline void SetEnergyMomentumCheckLevels(G4double relativeLevel, G4double absoluteLevel) { epCheckLevels.first = relativeLevel; epCheckLevels.second = absoluteLevel; levelsSetByProcess = true; } inline std::pair GetEnergyMomentumCheckLevels() const { return epCheckLevels; } // access to the cross section data store inline G4CrossSectionDataStore* GetCrossSectionDataStore() {return theCrossSectionDataStore;} inline void MultiplyCrossSectionBy(G4double factor) { aScaleFactor = factor; } protected: void DumpState(const G4Track&, const G4String&, G4ExceptionDescription&); // obsolete method will be removed inline const G4EnergyRangeManager &GetEnergyRangeManager() const { return theEnergyRangeManager; } // obsolete method will be removed inline void SetEnergyRangeManager( const G4EnergyRangeManager &value ) { theEnergyRangeManager = value; } // access to the chosen generator inline G4HadronicInteraction* GetHadronicInteraction() const { return theInteraction; } // access to the cross section data set inline G4double GetLastCrossSection() { return theLastCrossSection; } // fill result void FillResult(G4HadFinalState* aR, const G4Track& aT); // Check the result for catastrophic energy non-conservation G4HadFinalState* CheckResult(const G4HadProjectile& thePro, const G4Nucleus& targetNucleus, G4HadFinalState* result) const; // Check 4-momentum balance void CheckEnergyMomentumConservation(const G4Track&, const G4Nucleus&); private: G4double XBiasSurvivalProbability(); G4double XBiasSecondaryWeight(); // hide assignment operator as private G4HadronicProcess& operator=(const G4HadronicProcess& right); G4HadronicProcess(const G4HadronicProcess&); // Set E/p conservation check levels from environment variables void GetEnergyMomentumCheckEnvvars(); protected: G4HadProjectile thePro; G4ParticleChange* theTotalResult; G4int epReportLevel; private: G4EnergyRangeManager theEnergyRangeManager; G4HadronicInteraction* theInteraction; G4CrossSectionDataStore* theCrossSectionDataStore; G4Nucleus targetNucleus; bool G4HadronicProcess_debug_flag; // Energy-momentum checking std::pair epCheckLevels; G4bool levelsSetByProcess; std::vector theBias; G4double theInitialNumberOfInteractionLength; G4double aScaleFactor; G4bool xBiasOn; G4double theLastCrossSection; }; #endif