// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // INCL++ intra-nuclear cascade model // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics // Davide Mancusi, CEA // Alain Boudard, CEA // Sylvie Leray, CEA // Joseph Cugnon, University of Liege // #define INCLXX_IN_GEANT4_MODE 1 #include "globals.hh" #ifndef G4INCLNuclearDensity_hh #define G4INCLNuclearDensity_hh 1 #include #include // #include #include "G4INCLThreeVector.hh" #include "G4INCLIFunction1D.hh" #include "G4INCLParticle.hh" #include "G4INCLGlobals.hh" #include "G4INCLRandom.hh" #include "G4INCLINuclearPotential.hh" #include "G4INCLInverseInterpolationTable.hh" namespace G4INCL { class NuclearDensity { public: NuclearDensity(G4int A, G4int Z, InverseInterpolationTable *rpCorrelationTable); ~NuclearDensity(); /// \brief Copy constructor NuclearDensity(const NuclearDensity &rhs); /// \brief Assignment operator NuclearDensity &operator=(const NuclearDensity &rhs); /// \brief Helper method for the assignment operator void swap(NuclearDensity &rhs); /** \brief Get the maximum allowed radius for a given momentum. * \param p Absolute value of the particle momentum, divided by the * relevant Fermi momentum. * \return Maximum allowed radius. */ G4double getMaxRFromP(G4double p) const; G4double getMaxTFromR(G4double r) const; G4double getMaximumRadius() const { return theMaximumRadius; }; /** \brief The radius used for calculating the transmission coefficient. * * \return the radius */ G4double getTransmissionRadius(Particle const * const p) const { const ParticleType t = p->getType(); // assert(t!=Neutron && t!=PiZero && t!=DeltaZero); // no neutral particles here if(t==Composite) { return transmissionRadius[t] + ParticleTable::getNuclearRadius(p->getA(), p->getZ()); } else return transmissionRadius[t]; }; /** \brief The radius used for calculating the transmission coefficient. * * \return the radius */ G4double getTransmissionRadius(ParticleType type) { // assert(type!=Composite); return transmissionRadius[type]; }; /// \brief Get the mass number. G4int getA() const { return theA; } /// \brief Get the charge number. G4int getZ() const { return theZ; } G4double getNuclearRadius() { return theNuclearRadius; } private: /** \brief Initialize the transmission radius. */ void initializeTransmissionRadii(); G4int theA, theZ; G4double theMaximumRadius; /// \brief Represents INCL4.5's R0 variable G4double theNuclearRadius; /* \brief map of transmission radii per particle type */ G4double transmissionRadius[UnknownParticle]; InverseInterpolationTable *rFromP; InverseInterpolationTable *tFromR; }; } #endif