// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4TwistTubsHypeSide.hh 67011 2013-01-29 16:17:41Z gcosmo $ // // // -------------------------------------------------------------------- // GEANT 4 class header file // // // G4TwistTubsHypeSide // // Class description: // // Class describing a hyperbolic boundary surface for a cylinder. // Author: // 01-Aug-2002 - Kotoyo Hoshina (hoshina@hepburn.s.chiba-u.ac.jp) // // History: // 13-Nov-2003 - O.Link (Oliver.Link@cern.ch), Integration in Geant4 // from original version in Jupiter-2.5.02 application. // -------------------------------------------------------------------- #ifndef __G4TWISTTUBSHYPESIDE__ #define __G4TWISTTUBSHYPESIDE__ #include "G4VTwistSurface.hh" #include "G4Integrator.hh" #include "G4SimpleIntegration.hh" class G4TwistTubsHypeSide : public G4VTwistSurface { public: // with description G4TwistTubsHypeSide(const G4String &name, const G4RotationMatrix &rot, // 0.5*(phi-width segment) const G4ThreeVector &tlate, const G4int handedness,// R-hand = 1, L-hand = -1 const G4double kappa, // tan(TwistAngle/2)/fZHalfLen const G4double tanstereo, // tan(stereo angle) const G4double r0, // radius at z = 0 const EAxis axis0 = kPhi, const EAxis axis1 = kZAxis, G4double axis0min = -kInfinity, G4double axis1min = -kInfinity, G4double axis0max = kInfinity, G4double axis1max = kInfinity); G4TwistTubsHypeSide(const G4String &name, G4double EndInnerRadius[2], G4double EndOuterRadius[2], G4double DPhi, G4double EndPhi[2], G4double EndZ[2], G4double InnerRadius, G4double OuterRadius, G4double Kappa, G4double TanInnerStereo, G4double TanOuterStereo, G4int handedness) ; virtual ~G4TwistTubsHypeSide(); virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate = kValidateWithTol); virtual G4int DistanceToSurface(const G4ThreeVector &gp, G4ThreeVector gxx[], G4double distance[], G4int areacode[]); virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal = false) ; virtual EInside Inside(const G4ThreeVector &gp) ; virtual G4double GetRhoAtPZ(const G4ThreeVector &p, G4bool isglobal = false) const ; virtual G4ThreeVector SurfacePoint(G4double, G4double, G4bool isGlobal = false) ; virtual G4double GetBoundaryMin(G4double phi) ; virtual G4double GetBoundaryMax(G4double phi) ; virtual G4double GetSurfaceArea() ; virtual void GetFacets( G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside ) ; public: // without description G4TwistTubsHypeSide(__void__&); // Fake default constructor for usage restricted to direct object // persistency for clients requiring preallocation of memory for // persistifiable objects. private: virtual G4int GetAreaCode(const G4ThreeVector &xx, G4bool withTol = true); virtual G4int GetAreaCodeInPhi(const G4ThreeVector &xx, G4bool withTol = true); virtual void SetCorners(); virtual void SetCorners(G4double EndInnerRadius[2], G4double EndOuterRadius[2], G4double DPhi, G4double EndPhi[2], G4double EndZ[2]); virtual void SetBoundaries(); private: G4double fKappa; // std::tan(TwistedAngle/2)/HalfLenZ; G4double fTanStereo; // std::tan(StereoAngle) G4double fTan2Stereo; // std::tan(StereoAngle)**2 G4double fR0; // radius at z = 0 G4double fR02; // radius**2 at z = 0 G4double fDPhi ; // segment class Insidetype { public: G4ThreeVector gp; EInside inside; }; Insidetype fInside; }; //======================================================== // inline functions //======================================================== inline G4double G4TwistTubsHypeSide::GetRhoAtPZ(const G4ThreeVector &p, G4bool isglobal) const { // Get Rho at p.z() on Hyperbolic Surface. G4ThreeVector tmpp; if (isglobal) { tmpp = fRot.inverse()*p - fTrans; } else { tmpp = p; } return std::sqrt(fR02 + tmpp.z() * tmpp.z() * fTan2Stereo); } inline G4ThreeVector G4TwistTubsHypeSide:: SurfacePoint(G4double phi , G4double z , G4bool isGlobal) { G4double rho = std::sqrt(fR02 + z * z * fTan2Stereo) ; G4ThreeVector SurfPoint (rho*std::cos(phi), rho*std::sin(phi), z) ; if (isGlobal) { return (fRot * SurfPoint + fTrans); } return SurfPoint; } inline G4double G4TwistTubsHypeSide::GetBoundaryMin(G4double z) { G4ThreeVector ptmp(0,0,z) ; // temporary point with z Komponent only G4ThreeVector lowerlimit; // lower phi-boundary limit at z = ptmp.z() lowerlimit = GetBoundaryAtPZ(sAxis0 & sAxisMin, ptmp); return std::atan2( lowerlimit.y(), lowerlimit.x() ) ; } inline G4double G4TwistTubsHypeSide::GetBoundaryMax(G4double z ) { G4ThreeVector ptmp(0,0,z) ; // temporary point with z Komponent only G4ThreeVector upperlimit; // upper phi-boundary limit at z = ptmp.z() upperlimit = GetBoundaryAtPZ(sAxis0 & sAxisMax, ptmp); return std::atan2( upperlimit.y(), upperlimit.x() ) ; } inline G4double G4TwistTubsHypeSide::GetSurfaceArea() { // approximation with tube surface return ( fAxisMax[1] - fAxisMin[1] ) * fR0 * fDPhi ; } #endif