// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: $ // GEANT4 tag $Name: not supported by cvs2svn $ // // ------------------------------------------------------------------- // // GEANT4 Class header file // // // File name: G4VCrossSectionDataSet // // Author F.W. Jones, TRIUMF, 20-JAN-97 // // Modifications: // 23.01.2009 V.Ivanchenko move constructor and destructor to source // 05.07.2010 V.Ivanchenko added name, min and max energy limit and // corresponding access methods // 12.08.2011 G.Folger, V.Ivanchenko, T.Koi, D.Wright redesign the class // // // Class Description // This is a base class for hadronic cross section data sets. Users may // derive specialized cross section classes and register them with the // appropriate process, or use provided data sets. // // Each cross section should have unique name // Minimal and maximal energy for the cross section will be used in run // time before IsApplicable method is called // // Both the name and the energy interval will be used for documentation // // Class Description - End #ifndef G4VCrossSectionDataSet_h #define G4VCrossSectionDataSet_h 1 #include "globals.hh" #include "G4ParticleDefinition.hh" #include "G4Element.hh" #include "G4HadTmpUtil.hh" #include class G4DynamicParticle; class G4Isotope; class G4Material; class G4VCrossSectionDataSet { public: //with description G4VCrossSectionDataSet(const G4String& nam = ""); virtual ~G4VCrossSectionDataSet(); //============== Is Applicable methods =============================== // The following three methods have default implementations returning // "false". Derived classes should implement only needed methods. // Element-wise cross section virtual G4bool IsElementApplicable(const G4DynamicParticle*, G4int Z, const G4Material* mat = 0); // Derived classes should implement this method if they provide isotope-wise // cross sections. Default arguments G4Element and G4Material are needed to // access low-energy neutron cross sections, but are not required for others. virtual G4bool IsIsoApplicable(const G4DynamicParticle*, G4int Z, G4int A, const G4Element* elm = 0, const G4Material* mat = 0); //============== GetCrossSection methods =============================== // This is a generic method to access cross section per element // This method should not be overwritten in a derived class inline G4double GetCrossSection(const G4DynamicParticle*, const G4Element*, const G4Material* mat = 0); // This is a generic method to compute cross section per element // If the DataSet is not applicable the method returns zero // This method should not be overwritten in a derived class G4double ComputeCrossSection(const G4DynamicParticle*, const G4Element*, const G4Material* mat = 0); // The following two methods have default implementations which throw // G4HadronicException. Derived classes should implement only needed // methods, which are assumed to be called at run time. // Implement this method for element-wise cross section virtual G4double GetElementCrossSection(const G4DynamicParticle*, G4int Z, const G4Material* mat = 0); // Derived classes should implement this method if they provide isotope-wise // cross sections. Default arguments G4Element and G4Material are needed to // access low-energy neutron cross sections, but are not required for others. virtual G4double GetIsoCrossSection(const G4DynamicParticle*, G4int Z, G4int A, const G4Isotope* iso = 0, const G4Element* elm = 0, const G4Material* mat = 0); //===================================================================== // Implement this method if needed // This method is called for element-wise cross section // Default implementation assumes equal cross sections for all isotopes virtual G4Isotope* SelectIsotope(const G4Element*, G4double kinEnergy); // Implement this method if needed virtual void BuildPhysicsTable(const G4ParticleDefinition&); // Implement this method if needed // Default implementation will provide a dump of the cross section // in logarithmic scale in the interval of applicability virtual void DumpPhysicsTable(const G4ParticleDefinition&); virtual void CrossSectionDescription(std::ostream&) const; public: // Without Description inline void SetVerboseLevel(G4int value); inline G4double GetMinKinEnergy() const; inline void SetMinKinEnergy(G4double value); inline G4double GetMaxKinEnergy() const; inline void SetMaxKinEnergy(G4double value); inline const G4String& GetName() const; protected: inline void SetName(const G4String&); G4int verboseLevel; private: G4VCrossSectionDataSet & operator=(const G4VCrossSectionDataSet &right); G4VCrossSectionDataSet(const G4VCrossSectionDataSet&); G4double minKinEnergy; G4double maxKinEnergy; G4String name; }; inline G4double G4VCrossSectionDataSet::GetCrossSection(const G4DynamicParticle* dp, const G4Element* elm, const G4Material* mat) { return ComputeCrossSection(dp, elm, mat); } inline void G4VCrossSectionDataSet::SetVerboseLevel(G4int value) { verboseLevel = value; } inline void G4VCrossSectionDataSet::SetMinKinEnergy(G4double value) { minKinEnergy = value; } inline G4double G4VCrossSectionDataSet::GetMinKinEnergy() const { return minKinEnergy; } inline void G4VCrossSectionDataSet::SetMaxKinEnergy(G4double value) { maxKinEnergy = value; } inline G4double G4VCrossSectionDataSet::GetMaxKinEnergy() const { return maxKinEnergy; } inline const G4String& G4VCrossSectionDataSet::GetName() const { return name; } inline void G4VCrossSectionDataSet::SetName(const G4String& nam) { name = nam; } #endif