
MAUS Analysis User System

User Guide

1

Contents

1 What Who and How? 6
1.1 Who Should Use MAUS . 6
1.2 Getting the Code and Installing MAUS . 6
1.3 Citing MAUS . 6
1.4 Running MAUS . 6

1.4.1 Run Control . 7
1.4.2 Other Applications . 7
1.4.3 Choosing the Unpacker Version . 8

1.5 Accessing Data . 8
1.5.1 Loading ROOT Files in Python Using PyROOT 8
1.5.2 Loading ROOT Files in C++ Compiled Analysis Code 8
1.5.3 Loading ROOT Files on the ROOT Command Line 8

2 Using and Modifying the Data Structure 10
2.1 Metadata . 10
2.2 The Spill Datastructure . 10
2.3 Image Datastructure . 12
2.4 Accessing ROOT �les . 12
2.5 Conversion to, and Working With, JSON . 12
2.6 Extending the Data Structure . 13

2.6.1 Pointer Handling . 14

3 Introduction to the MAUS API 16
3.1 Motivation . 16
3.2 Everything starts with a `Module' . 16
3.3 Inheritance . 16
3.4 Data Mangling . 17
3.5 Module Initialisation and Destruction . 17
3.6 Global Objects - Objects for Many Modules . 17

3.6.1 Global Object Initialisation . 17
3.7 Internal Classes . 17

3.7.1 Abstraction Layers . 18
3.7.2 C++ Python Wrapper . 18
3.7.3 Data Mangling . 18

4 Utilities 19
4.1 Logging . 19

5 Running the Monte Carlo 21
5.1 Beam Generation . 21

5.1.1 Beam Polarisation . 22
5.1.2 Amplitude Momentum Correlation . 22

5.2 Getting the Right Answer . 22
5.2.1 Geometry . 22
5.2.2 Tracking . 22
5.2.3 Energy Deposition and Showering . 28

5.3 GEANT4 Bindings . 28

2

6 Geometry 33
6.1 Geometry Access Scripts . 33
6.2 Using the Geometry Download Executables . 34
6.3 A Little GDML . 37

6.3.1 De�ne . 38
6.3.2 Materials . 38
6.3.3 Solids . 38
6.3.4 Structure . 38
6.3.5 Additional Features and Sensitive Detectors . 38

6.4 Creation of New Geometries in MAUS . 38

7 How to De�ne a Geometry 40
7.0.1 Con�guration File . 40
7.0.2 Module Files . 41
7.0.3 Volume and Dimensions . 42
7.0.4 Properties . 42
7.0.5 Child Modules . 42
7.0.6 Module Hierarchy and GEANT4 Physical Volumes 43
7.0.7 A Sample Con�guration File . 43
7.0.8 A Sample Child Module File . 44

8 Geometry and Tracking MiceModule Properties 45
8.1 General Properties . 45
8.2 Sensitive Detectors . 45

8.2.1 Scintillating Fibre Detector (SciFi) . 46
8.2.2 Cerenkov Detector (CKOV) . 46
8.2.3 Time Of Flight Counter (TOF) . 46
8.2.4 Special Virtual Detectors . 46
8.2.5 Virtual Detectors . 46
8.2.6 Envelope Detectors . 47

8.3 Unconventional Volumes . 49
8.3.1 Trapezoid Volume . 49
8.3.2 Volume Wedge . 49
8.3.3 Volume Polycone . 49
8.3.4 Volume Quadrupole . 49
8.3.5 Volume Multipole . 50
8.3.6 Volume Boolean . 50
8.3.7 Volume Sphere . 51

8.4 Repeating Modules . 51
8.5 Beam De�nition and Beam Envelopes . 51
8.6 Optimiser . 54

9 Field Properties 57
9.0.1 FieldType CylindricalField . 57
9.0.2 FieldType RectangularField . 57
9.0.3 FieldType Solenoid . 57
9.0.4 FieldType FieldAmalgamation . 58
9.0.5 FieldType DerivativesSolenoid . 59
9.0.6 Phasing Models . 59
9.0.7 Tracking Stability Around RF Cavities . 59
9.0.8 FieldType PillBox . 60
9.0.9 FieldType RFFieldMap . 60
9.0.10 FieldType Multipole . 61
9.0.11 FieldType CombinedFunction . 61
9.0.12 EndFieldTypes . 62
9.0.13 FieldType MagneticFieldMap . 63

3

10 TOF Detector 65
10.1 Simulation . 65

10.1.1 Digitization . 65
10.2 Reconstruction . 66
10.3 Database . 67

11 The Trackers 69
11.1 Introduction . 69

11.1.1 Overview . 69
11.1.2 Quick start guide . 69

11.2 De�nitions . 70
11.2.1 Labelling of upstream and downstream trackers . 70
11.2.2 Station numbering . 70
11.2.3 Doublet layer . 70
11.2.4 Fibre-channel numbering . 72

11.3 Reference surfaces and coordinate systems . 72
11.3.1 Doublet layer . 72
11.3.2 Station . 72
11.3.3 Tracker . 72
11.3.4 Coordinate transformations . 75

11.4 Reconstruction Algorithms . 75
11.4.1 Hits and clusters . 75
11.4.2 Space-point reconstruction . 77
11.4.3 Pattern recognition . 78
11.4.4 Track �t . 84

11.5 Data structure . 84
11.6 Code Design . 84

11.6.1 General Code Structure . 84
11.6.2 Tracker con�guration variables . 88

11.7 The Monte Carlo . 88
11.7.1 Station Geometry . 89
11.7.2 MC VLPC Dark Count . 89
11.7.3 Building Digits . 89

12 Global Track Matching 90
12.1 Purpose . 90
12.2 Process . 90

12.2.1 4th Order Runge-Kutta Propagation . 90
12.2.2 TOF1, TOF2, KL . 90
12.2.3 TOF0 . 91
12.2.4 Cherenkov Detectors . 91
12.2.5 EMR . 91
12.2.6 Upstream-Downstream Matching . 91

12.3 Usage . 91
12.4 Con�guration . 91

13 Global PID 93
13.1 Introduction . 93

13.1.1 Using the PID scripts . 93
13.1.2 Producing PDFs . 93

13.2 MapCppGlobalPID and ReduceCppGlobalPID . 97
13.2.1 MapCppGlobaPID . 97

13.3 ReduceCppGlobalPID . 97
13.4 PID Variables . 98

13.4.1 PID Base Class . 98
13.4.2 PID Variable Classes . 98

4

14 Accessing Global Tracks 101
14.1 The PrimaryChain Object . 101

14.1.1 Identifying Decay Candidates . 102
14.2 Tracks and Space Points from Local Reconstruction . 102

15 The Envelope Tool 103
15.1 Example Usage . 103
15.2 Envelope Tool main window . 104
15.3 Beam Setup . 104
15.4 Magnet Setup . 104
15.5 Plot Setup . 105

16 G4beamline-MAUS Integration 106

17 Appendix C: Tracker Appendices 108
17.1 Kuno's Conjecture . 108
17.2 Space-point variance . 108
17.3 Circle parameters from three points . 112
17.4 Helical Track Pattern Recognition . 113

5

Chapter 1

What Who and How?

MAUS (MICE Analysis User Software) is the MICE project's tracking, detector reconstruction and
accelerator physics analysis framework. MAUS is designed to ful�l a number of functions for physicists
interested in studying MICE data:

� Model the behaviour of particles traversing MICE

� Model the MICE detector's electronics response to particles

� Perform pattern recognition to reconstruct particle trajectories from electronics output

� Provide a framework for high level accelerator physics analysis

� Provide online diagnostics during running of MICE

In addition to MAUS's role within MICE, the code is also used for generic accelerator development,
in particular for the Neutrino Factory.

1.1 Who Should Use MAUS

MAUS is intended to be used by physicists interested in studying the MICE data. MAUS is designed
to function as a general tool for modelling particle accelerators and associated detector systems. The
modular system, described in the API section, makes MAUS suitable for use by any accelerator or
detector group wishing to perform simulation or reconstruction work.

1.2 Getting the Code and Installing MAUS

Installation is described in a separate document, available at http://micewww.pp.rl.ac.uk/projects/
maus/wiki/Install

1.3 Citing MAUS

MAUS should be cited according to the guidelines in the �le CITATION.

1.4 Running MAUS

MAUS contains several applications to perform various tasks. Two main applications are provided.
bin/simulate_mice.pymakes a Monte Carlo simulation of the experiment and bin/analyze_data_offline.py
reconstructs an existing data �le. Start a clean shell and move into the top level MAUS directory. Then
type

> source env.sh

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py

> ${MAUS_ROOT_DIR}/bin/analyze_data_offline.py

6

http://micewww.pp.rl.ac.uk/projects/maus/wiki/Install
http://micewww.pp.rl.ac.uk/projects/maus/wiki/Install

1.4.1 Run Control

The routines can be controlled by a number of settings that enable users to specify run con�gurations,
as speci�ed in this document. Most control variables can be controlled directly from the comamnd line,
for example doing

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py \

--simulation_geometry_filename Test.dat

to run the Monte Carlo against a given geometry. As another example, it is possible to run the data
reconstruction against a given run

> cd ${MAUS_ROOT_DIR}

> ${MAUS_ROOT_DIR}/bin/analyze_data_offline.py \

--daq_data_file 02873 \

--daq_data_path src/input/InputCppDAQData

This will run against data in run 02873 looking for �les in directory src/input/InputCppDAQData.
To get a (long) list of all command line variables use the -h switch.

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py -h

More complex control variables can be controlled using a con�guration �le, which contains a list of
con�guration options.

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py --configuration_file config.py

where a sample con�guration �le for the example above might look like

simulation_geometry_filename = "Test.dat"

Note that where on the command line a tag like --variable value was used, in the con�guration �le
variable = "value" is used. In fact the con�guration �le is a python script. When loaded, MAUS
looks for variables in it's variable list and loads them in as con�guration options. Other variables are
ignored. This gives users the full power of a scripting language while setting up run con�gurations. For
example, one might choose to use a di�erent �lename,

import os

simulation_geometry_filename = os.path.join(

os.environ["MICEFILES"]

"Models/Configurations/Test.dat"

)

This con�guration will then load the �le at $MICEFILES/Models/Configurations/Test.dat
The default con�guration �le can be found at src/common_py/ConfigurationDefaults.py which

contains a list of all possible con�guration variables and is loaded by default by MAUS. Any variables
not speci�ed by the user are taken from the con�guration defaults.

1.4.2 Other Applications

There are several other applications in the bin directory and associated subdirectories.

� bin/examples contains example scripts for accessing a number of useful features of the API

� bin/utilities contains utility functions that perform a number of useful utilities to do with data
manipulation, etc

� bin/user contains analysis functions that our users have found useful, but are not necessarily
thoroughly tested or documented

� bin/publications contains analysis code used for writing a particular (MICE) publication

7

1.4.3 Choosing the Unpacker Version

The unpacker is the third party library shipped with MAUS used to unpack the MICE DAQ binary data.
It comes in two versions, one for Step I data and one for Step IV data. The current default unpacker
version is Step IV. In order to switch unpacker versions, set up the MAUS environment, and source (not
run) the script switch_unpacker.bash in the MAUS root directory supplying either StepI or StepIV as
an argument, depending on the unpacker needed. This will then build the correct unpacker, clean and
rebuild MAUS, modify env.sh and test the new con�guration.

1.5 Accessing Data

By default, MAUS writes data as a ROOT �le. ROOT is a widely available high energy physics data
analysis library, available from ''http://root.cern.ch'' and prepacked with the MAUS third party
libraries. Two techniques are foreseen for accessing the data, either using PyRoot python interface or
using a compiled C++ binary. Some mention of ROOT cint scripting tools is made below, but this is
not supported by MAUS developers beyond the most basic usage.

1.5.1 Loading ROOT Files in Python Using PyROOT

The standard scripting tool in MAUS is python. The ROOT data structure can be loaded in python
using the PyROOT package. An example of how to perform a simple analysis with PyROOT is
available in bin/examples/load_root_file.py. This example runs the reconstruction code to pro-
duce an output data �le ${MAUS_ROOT_DIR}/tmp/example_load_root_file.root and then runs a toy
analysis that plots digits at TOF1 for plane 0 and plane 1. This example produces two histograms,
tof1_digits_0_load_root_file.png and tof1_digits_1_load_root_file.png.

1.5.2 Loading ROOT Files in C++ Compiled Analysis Code

The ROOT data structure can be loaded in C++ by compiling the Make �le found in
bin/examples/load_root_file_cpp/Makefile. This compiles the sample analysis in
bin/examples/load_root_file_cpp/load_root_file.cc. For example,

$ source env.sh

$ cd ${MAUS_ROOT_DIR}/bin/examples

$ python load_root_file.py

$ cd ${MAUS_ROOT_DIR}/bin/examples/load_root_file_cpp/

$ make clean

$ make

$./load_root_file

This example performs a simple analysis against the data �le generated by load_root_file.py, which
is identical to the analysis performed by load_root_file.py. The executable produces two histograms,
tof1_digits_0_load_root_file_cpp.png and tof1_digits_1_load_root_file_cpp.png; they should
be identical to the histograms produced by load_root_file.py.

1.5.3 Loading ROOT Files on the ROOT Command Line

One can load ROOT �les from the command line using the ROOT interactive display. It is �rst necessary
to load the MAUS class dictionary. Then The TBrowser ROOT GUI can be used to browse to the desired
location and interrogate the data structure interactively. For example,

$ source env.sh

$ root

* *

* W E L C O M E to R O O T *

* *

* Version 5.30/03 20 October 2011 *

8

''http://root.cern.ch''

* *

* You are welcome to visit our Web site *

* http://root.cern.ch *

* *

ROOT 5.30/03 (tags/v5-30-03@41540, Oct 24 2011, 11:51:36 on linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] .L $MAUS_ROOT_DIR/build/libMausCpp.so

root [1] TBrowser b

Note: ROOT infrastructure can only be used to plot data nested within up to two dynamic arrays.
Data nested in three or more dynamic arrays is beyond the capabilities of ROOT interactive plotting
tools; explicit loops over the data are required in a PyROOT script or C++ code. In general, working
through the ROOT command line or ROOT macros is notoriously unreliable and is not supported by
the MAUS development team; it is useful as a basic check of data integrity and no more.

More information on the data is available in the data structure chapter 2.

9

Chapter 2

Using and Modifying the Data

Structure

MAUS operates on data in discrete blocks, primarily spills, with one spill representing the particle burst
generated by one dip of the MICE target. Additionally, MAUS can write data into a JobHeader, Run-
Header, RunFooter and JobFooter data type. Histograms for plotting in online mode are encoded into
an Image data type. The top level branch in the data tree inherits from MAUSEvent<T>, de�ned in
src/common_cpp/DataStructure/MAUSEvent.hh (C++) with type identi�ed by GetEventType() string;
in JSON the top level branch always has a maus_event_type member which is a string value correspond-
ing to the output of MAUSEvent<T>::GetEventType(). A summary of con�guration cards a�ecting
Input, Output and data structure is shown below.

2.1 Metadata

Job metadata is stored in JobHeader and JobFooter data structures. (Data) Run metadata is stored
in RunHeader and RunFooter data structures. The JobHeader is created at the start and end of an
execution of the code and stores data on datacards, bzr state and so forth. The RunHeader is created
at the start of each run and stores per run metadata such as the calibrations and cablings used. One
RunHeader and RunFooter is written for each process in the entire transform and merge execution
structure; so in multithreading mode this would yield one RunHeader and RunFooter for each Celery
subprocess (which runs the Input/Transform) and an additional RunHeader and RunFooter for the
merge/output process. In single threaded mode a single RunHeader and RunFooter is generated. The
RunFooter and JobFooter are created at the end of the run and store run and job summary information.
For more details on writing to these metadata types and multithreading modes, please see the section
on API.

The Metadata is stored in ROOT in trees separate to the main Spill data tree. In JSON, these data are
stored as separate lines often at the start and end of the run, and distinguished by the maus_event_type
branch in the root. The structure of a MAUS output �le is shown below.

2.2 The Spill Datastructure

The major part of the MAUS data structure therefore is a tree of which each entry corresponds to
the data associated with one spill. The spill is separated into three main sections: the MCEventArray
contains an array of data each member of which represents the Monte Carlo of a single primary particle
crossing the system; the ReconEventArray contains an array of data each member of which corresponds
to a particle event (i.e. set of DAQ triggers); and the DAQData corresponds to the raw data readout.
Additionally there are branches for reconstructed scalars, which are handled spill by spill and EMR data,
which also read out on the spill rather than event by event.

The MCEvent is subdivided into sensitive detector hits and some pure Monte Carlo outputs. The
primary that led to data being created is held in the Primary branch. Here the random seed, primary
position momentum and so forth is stored. Sensitive detector hits have Hit data (energy deposited,
position, momentum, etc) and a detector speci�c ChannelId that represents the channel of the detector
that was hit - e.g. for TOF this indexes the slab, plane and station. Virtual hits are also stored - these

10

Table 2.1: I/O control variables.
Name Meaning
input_root_file_name Set the �le name used for reading input �les by InputCppRoot module
output_root_file_name Set the �le name used for writing output �les by OutputCppRoot module
end_of_run_output

_root_directory

Set target directory for end of run �le placement. The user must ensure
that this directory exists or MAUS will throw an exception.

output_root_file_mode Controls how root �les are handled across multiple run numbers. Set
to one_big_file to put everything into one big �le with �le name
given by output_root_file_name. Set to one_file_per_run to split
the �lename by the trailing `.' and insert the run number, for each
run. For example, output.root would become output_999.root for
run number 999. Set to end_of_run_file_per_run to place in a di-
rectory speci�ed by end_of_run_output_root_directory. Data from
each run will be placed in a subdirectory speci�ed by the run number,
and a �le speci�ed by the output_root_file_name within that direc-
tory. MAUS will create the run number directory if one does not exist
but not the end_of_run_output_root_directory. So in the example
above, if end_of_run_output_root_directory is end_of_run �les will
be placed like ./end_of_run/999/output.root

input_json_file_name Set the �le name used for reading input �les by InputPyJSON module
input_json_file_type Set to gzip to read input from a gzipped �le; set to text to read input

from a plain text �le
output_json_file_name Set the �le name used for writing output �les by OutputPyJSON module
output_json_file_type Set to gzip to write output as a gzipped �le; set to text to write output

as a plain text �le
header_and_footer_mode Set to append to write out job and run headers and footers; set to

dont_append to suppress this output.

11

Figure 2.1: The MAUS �le structure including metadata. The top label in each box describes the
representation in C++/ROOT. The bottom label describes the representation in JSON.

Figure 2.2: The MAUS output structure for a spill event. The top label in each box is the name of
the C++ class and the bottom label is the json branch name. If a [] is shown, this indicates that child
objects are array items.

are not sensitive detector hits, rather output position, momenta etc of particles that cross a particular
plane in space, time or proper time is recorded. Note virtual hits do not inherit from the Hit class and
have a slightly di�erent data structure.

The ReconEvent and DAQEvents are subdivided by detector. ReconEvents contain reconstructed
particle data for each detector and the trigger. There is an additional branch that contains global
reconstruction output, that is the track �tting between detectors.

The data can be written in two formats. The main data format is a ROOT binary format. This
requires the ROOT package to read and write, which is a standard analysis/plotting package in High
Energy Physics and is installed by the MAUS build script. The secondary data format is JSON. This
is an ascii data-tree format that in principle can be read by any text editor. Speci�c JSON parsers are
also available - for example, the python json module is available and comes prepackaged with MAUS.

2.3 Image Datastructure

There is a �nal data type that MAUS handles, the Image type. The Image data structure is written by
ReducePyMatplotHistogram and ReducePyROOTHistogram data types. Image data is only available in
JSON format. The data structure is shown in Fig. 2.3.

Each document contains a maus_event_type that should always be Image, and a list of images; the
image data is encoded as a base 64 image and other data associated with the image is stored alongside.
The tag names the image, while image_type describes the data format (png, jpeg, etc). OutputPyImage
stores data with image_type.tag as the �le name. description contains a description of the �le and
keywords describes a list of key phrases that can be used when searching.

2.4 Accessing ROOT �les

For details on how to access the ROOT �les, please see the introduction section of this document.

2.5 Conversion to, and Working With, JSON

MAUS also provides output in the JSON data format. This is an ascii format with IO libraries
available for C++, Python and other languages. Two utilities are provided to perform conversions,

12

Figure 2.3: The MAUS output structure for an Image event. The top label in each box is the name of
the JSON branch and the bottom label is the data type. If a [] is shown, this indicates that child objects
are array items. Note there is no C++ implementation of Image events

bin/utilities/json_to_root.py and bin/utilities/root_to_json.py for conversion from and to
JSON format respectively. JSON Input and Output modules are provided, InputPyJson and OutputPyJson.

An example json analysis is available in bin/examples/load_json_file.py/

2.6 Extending the Data Structure

The data structure can be extended in MAUS by adding extra classes to the existing data structure.
The data classes are in src/common_cpp/DataStructure. In order to make these classes accessible to
ROOT, the following steps must be taken:

� Add a new class in src/common_cpp/DataStructure.

� Ensure that default constructor, copy constructor, equality operator and destructor is present. The
destructor must be virtual.

� Add #include "src/common_cpp/Utils/VersionNumber.hh" and a call to the MAUS_VERSIONED_CLASS_DEF()
macro at the end of the class de�nition before the closing braces. MAUS_VERSIONED_CLASS_DEF calls
the ROOT ClassDef() macro which generates metaclasses based on information in the class. This
is put into the (dynamically generated) MausDataStructure.h,cc �les.

� Add the class to the list of classes in src/common_cpp/DataStructure/LinkDef.hh. This is re-
quired for the class to be linked properly to the main library, and a linker error will result if this
step is not taken.

� Add any template de�nitions which you used, including STL classes (e.g. std::vector<MyClass>
or whatever) to linkdef. Otherwise ROOT will generate a segmentation fault whenever the user
tries to call functions of the templated class (but the code will link successfully in this case).

In order to make these classes accessible to JSON, it is necessary to add a new processor in
src/common_cpp/JsonCppProcessors. There are a few default processors available.

13

� src/common_cpp/JsonCppProcessors/ProcessorBase.hh contains IProcessor pure interface class
for all processors and ProcessorBase base class (which may contain some implementation)

� src/common_cpp/JsonCppProcessors/PrimitivesProcessors.hh contains processors for primi-
tive types; BoolProcessor, IntProcessor, UIntProcessor, StringProcessor, DoubleProcessor

� src/common_cpp/JsonCppProcessors/ArrayProcessors.hh contains processors for array types.
Two processors are available: PointerArrayProcessor which converts an STL vector of pointers to
data; and ValueArrayProcessor which converts an STL vector of values to data.

� src/common_cpp/JsonCppProcessors/ObjectProcessor.hh contains a processor for object types.
Most of the classes in the MAUS data structure are represented in JSON as objects (string value
pairs) where each string names a branch and each value contains data, which may be another class.

� src/common_cpp/JsonCppProcessors/ObjectMapProcessors.hh contains a processor for convert-
ing from JSON objects to STL maps. This is useful for JSON objects that contain lots of branches
all of the same type.

A script, bin/user/json_branch_to_data_structure_and_cpp_processor.py is available that anal-
yses a JSON object or JSON tree of nested objects and converts to C++ classes. The script is provided
"as-is" and it is expected that developers will check the output, adding comments and tests where
appropriate.

2.6.1 Pointer Handling

MAUS can handle pointers for arrays and classes using ROOT native support (via the TRef and
TRefArray classes) or the standard JSON reference syntax. JSON references are indexed by a path
relative to the root value of a JSON document. JSON references are formatted like URIs, for example
the JSON object {"$ref":"#spill/recon_events/1"} would index the second recon_event in the spill
object (indexing from 0). MAUS can only handle paths relative to the top level of the JSON document
for the same MAUS event. Absolute URIs, URIs relative to another position in the JSON document or
URIs to another MAUS event are not supported.

In MAUS, it is necessary to make a distinction between data that is stored as a value in C++ and
JSON (value-as-data), data that is stored as a pointer in C++ and a value in JSON (pointer-as-data)
and data that is stored as a pointer in C++ and JSON to some other data in the same tree (pointer-as-
reference). In the latter case, the C++ parent object does not own the memory; rather it is owned by
some other object in the same tree and borrowed by the C++ object holding the pointer-as-reference.
The TRef and TRefArray classes provide this functionality by default; never owning the memory but only
storing a relevant pointer. All objects referenced by a TRef or TRefArray must inherit from TObject.
ROOT handles all memory management while writing to and reading from ROOT �les, and the order of
reading is unimportant, as long as both reference and value have been read before the reference is used.

Pointers-as-data are converted between JSON arrays and C++ objects using the
ObjectProcessor<ParentType>::RegisterPointerBranch<ChildType> method. This takes a Proces-
sor for the ChildType as an argument. For C++ arrays / vectors, the Processor argument is instead a
PointerArrayProcessor<ArrayContents>. Pointers-as-reference (TRef and TRefArray) are converted
using the ObjectProcessor<ParentType>::RegisterTRef and
ObjectProcessor<ParentType>::RegisterTRefArray methods respectively.

Other equivalent data formats, for example YAML, use a unique identi�er to reference a pointer-as-
reference and store the pointer-as-data in a reserved part of the data tree. There are some consequences
of storing pointers-as-reference using the path to a pointer-as-data as implemented in MAUS.

� The user must specify which data is the primary data source (pointer-as-data) and which data is
a cross reference (pointer-as-reference).

� Pointers-as-reference are position dependent. If the associated pointer-as-data is moved the pointer-
as-reference can no longer be resolved. For example, inserting an element into an array can cause
misalignment of pointers-as-reference.

� Pointer data will always be available at the location of the pointer-as-data in the JSON tree, even
when using a parser that is not pointer aware.

14

� A unique identi�er type algorithm can be implemented as a relatively simple extension of the data
format outlined here; but it is relatively hard to extend a unique identi�er algorithm to reference
existing parts of the data tree.

Pointer Resolution

Conversion from C++ pointers to JSON pointers is handled in a type-safe way. Values-as-data are
stored in the data tree converted at run time from JSON to C++ and vice versa. Pointers-as-data are
handled in the same way as Values-as-data. Pointers-as-references are stored in the C++ data tree as
a TRef (or TRefArray element) in the normal way, and in JSON as an address to the position in the
tree to a pointer-as-data. It is an error to store a pointer-as-reference without storing an associated
pointer-as-data as the pointer-as-reference cannot be converted, unless the pointer-as-reference is set to
NULL (in which case it may be an error depending on caller settings). It is an error to store multiple
C++ pointers-as-data to the same memory address as the conversion from C++ to JSON and back again
would yield logically di�erent data and the resolution of associated pointers-as-reference is dependent on
the resolution order of the data tree, which is ill-de�ned.

In order to implement the data conversion, the pointers have to be resolved in a two-stage process. In
the �rst stage, it is necessary to collect all of the pointers-as-data and pointers-as-reference by traversing
the data tree. This is performed during the standard data conversion, but pointers-as-reference are left
pointing to NULL. A mapping from the pointer-as-data in the original data format to the pointer-as-data
in the converted data format is stored, together with a list of pointers-as-reference in the original data for-
mat and the necessary mutators in the converted data format. In the second stage MAUS iterates over the
pointers-as-reference, �nds the appropriate pointer-as-data and writes the location of the pointer-as-data
to the pointer-as-reference in the converted data format. The code is templated to maintain full type-
safety during this process.

15

Chapter 3

Introduction to the MAUS API

This chapter introduces the MAUS API framework and looks in depth at the structure of the classes
and interfaces that it comprises of. Several example minimal implementations are given before a note
on scalability and extending the framework.

3.1 Motivation

The MAUS API framework provides MAUS developers with a well-de�ned environment for developing
reconstruction code, while allowing independent development of the backend and code sharing of common
elements like error handling and data mangling.

3.2 Everything starts with a `Module'

An Module is the basic building block of the MAUS API framework. Four types of module exist within
MAUS.

� An Input module is used to create an instance of a MAUS Spill structure.

� An Output module is used to store an instance of a MAUS data structure.

� A Map module is used to modify a single Spill item. This enables the reconstruction to be paral-
lelised across multiple Maps.

� A Reduce module is used to act on a collection of Spills.

Every module has a constructor, destructor, a birth and a death method. Input modules have an
emitter function that yields a new data object. Output modules have a save function that takes a data
object and stores it (either on disk, or for example broadcasting across a socket).

Map modules and Reduce modules have a process function that takes a data object and modi�es it.
The important di�erence is that Map modules have no internal state, meaning that they can be run in
parallel. Reduce modules, on the other hand, do have internal state. This means that they can act on
groups of Spills, for example collecting histogram data.

3.3 Inheritance

In order to correctly make a module, one should inherit from the correct type.

� Input modules should inherit from InputBase.

� Output modules should inherit from OutputBase.

� Map modules should inherit from MapBase.

� Reduce modules should inherit from ReduceBase.

Base types are de�ned in src/common_cpp/API for C++ modules and src/common_py/API for python
modules.

16

3.4 Data Mangling

MAUS supports representation of the data structure in various di�erent formats. MAUS support repre-
sentation in ROOT, ascii string and json formats. It is recommended that reconstruction routines use
the ROOT format. For legacy reasons, MAUS supports reconstruction of data stored in ascii or json
formats.

In python, the representation (i.e. format) of the data can be changed by using the module maus_cpp.converter.
If a module implements conversion to a speci�c data type, the can_convert �ag should be set to True;
otherwise MAUS will always hand data in string format.

In C++, mappers are templated to a MAUS data type. The API then handles any necessary con-
version to that data type, and provides the appropriate python wrapper code for that module.

Currently only map modules support data mangling.

3.5 Module Initialisation and Destruction

MAUS has two execution concepts. A Job refers to a single execution of the code, while a Run refers to
the processing of data for a MICE data run or Monte Carlo run.

In MAUS, Inputters, Mappers, Reducers and Outputters are initialised at the start of every Job and
destructed at the end of every Job. birth(...) for Inputters and Outputters is called at the start of
every Job and death() is called at the end of every Job. The birth(...) for Mappers and Reducers is
called at the start of every Run and death() is called at the end of every Run.

The logic is that for each code execution we typically want to access data from a single data source
and output data to a single data �le. But mappers and reducers are reinitialised for each run to enable
loading of new calibrations, etc. It is required that all transient information about the reconstruction
pertaining to a run - particularly ID of the calibration and cabling used - is recorded in the StartOfRun
data structure. Any summary information on code execution during the run may be stored in the
EndOfRun data structure. All transient information pertaining to a job - for example code version or
bzr branch - should be recorded in the StartOfJob data structure. Any summary information on code
execution during the job may be stored in the EndOfJob data structure.

3.6 Global Objects - Objects for Many Modules

There are some objects that sit outside the scope of the modular framework described above. Typically
these are objects that do not belong to any one module, but need to be accessed by many. Examples
are the logging functionality (Squeak), ErrorHandler, Con�guration datacards, �eld maps, geometry de-
scription and Geant4 interfaces. These are accessed through the static singleton class Globals de�ned in
src/common_cpp/Utils/Globals.hh. Initialisation is handled in src/common_cpp/Globals/GlobalsManager.hh.
One Globals instance is initialised per subprocess when running in multiprocessing mode.

For python users, some Global objects can be accessed by reference to the maus_cpp.globals module.

3.6.1 Global Object Initialisation

Global objects are initialised before any modules in Go.py and deleted after all modules are deathed.
Global object initialisation and destruction is handled at the Job level by src/common_cpp/Globals/GlobalManager.hh
and called in python via maus_cpp.globals as above.

Run-by-run initialisation is handled by the RunActionManager, de�ned in
src/common_cpp/Utils/RunActionManager.hh. The RunActionManager holds a list of objects inher-
iting from RunActionBase each of which de�nes functions to call at the start and end of each run.

3.7 Internal Classes

The following classes and namespaces are used to provide an interface between reconstruction modules
and the framework (backend).

17

3.7.1 Abstraction Layers

These are all de�ned in src/common_cpp/API and src/common_py/API folders

� IModule - interface class for all modules; de�nes birth and death

� ModuleBase - base class for modules, includes some error handling.

� IInput - interface class for all inputs; de�nes emitter and inherits from IModule

� InputBase - base class for all inputs, includes some error handling and inherits from ModuleBase
and IInput

� IMap - interface class for all inputs; de�nes process and inherits from IModule

� MapBase - base class for all inputs, includes some error handling and inherits from ModuleBase
and IMap

� IReduce - interface class for all reducers; de�nes process and inherits from IModule

� ReduceBase - base class for all reducers, includes some error handling and inherits from ModuleBase
and IReduce

� IOutput - interface class for all outputs; de�nes save and inherits from IModule

� OutputBase - base class for all outputs, includes some error handling and inherits from ModuleBase
and IOutput

3.7.2 C++ Python Wrapper

src/common_cpp/API/PyWrapMapBase is a templated class that wraps a generic map object and provides
python interfaces to that map object.

Currently, Input, Reduce, Output wrappers are provided by SWIG.

3.7.3 Data Mangling

Data mangling is handled in a variety of layers.

� src/common_cpp/Converter/ConverterBase provides an abstraction for conversion from one type
to another

� src/common_cpp/Converter/DataConverters provides implementations of the data conversions

� src/common_cpp/Converter/ConverterFactory provides a function like
TYPE2* convert<TYPE1, TYPE2>(TYPE1* data) with implementations for each of the types. This
then provides explicit conversion (i.e. where both input and output types are known.

� src/common_cpp/Utils/PyObjectWrapper provides functions for wrapping all of the data types
into a PyObject*. It also provides a function that unwraps the PyObject*, �gures out the data
type and returns a data of the appropriate type.

� src/common_cpp/API/PyWrapMapBase calls unwrap based on the type stored in the PyObject*.

18

Chapter 4

Utilities

This chapter describes the various utilties present in MAUS, such as the built-in logger.

4.1 Logging

The MAUS logging system is built around the Squeak class. The code for the Squeak class is located in
src/common_cpp/Utils. It is implemented as a singleton class, designed to wrap the standard output,
log and error streams (cout, clog, cerr). It addition to this the ability to output to a standard log �le is
present.

The key interface point with the class for the user is the mout method, which takes an �error level�
as an argument and returns an output stream which may be streamed to. The error levels themselves
are de�ned in an enum and may take the values described in table 4.1.

Name Value Default stream
debug 0 cout
info 1 clog
warning 2 cerr
error 3 cerr
fatal 4 cerr
log 5 �le

Table 4.1: The MAUS logging error levels.

Prior to use Squeal must be con�gure by calling the following methods:

Squeal : : setStandardOutputs (ve rbose_leve l) ;
Squeal : : setOutputs (verbose_leve l , l o g_ l eve l) ;

where both verbose_level and log_level are integers. The �rst function con�gures whether cout, clog
and cerr point to the screen, the log �le or /dev/null. If the verbose level supplied is 0 everything goes
to screen, 1 clog and cerr only go to screen, 2 and 3 only cerr goes to screen, >3 none go to screen.

The second function controls where di�erent mout error levels go. If the verbosity level supplied is
less than or equal to the enum value (de�ned in table 4.1) of the particular error level then that value
goes to screen. The exception to this is log which may only go to �le. If an error level does not go to
screen then it goes to either /dev/null or the log �le, depending on the log level.

The log level de�nes what data is sent to the log �le. When set to 0 no log �le is create, streams to
Squeal::log are thrown away, together with all other error levels not going to screen. When set to 1
a log �le is created which records only explicit calls to Squeal::log. When set to 2 a log �le is again
created which captures calls to Squeal::log and any other error level which does not make it to screen.

Both the verbose and log level may be set via datacards using the variables verbose_level and
log_level (set to 1 and 0 respectively by default). The log �le name defaults to �maus.log�. It may be
changed using the method:

Squeal : : setLogName ("some_name . l og ")

19

This must be called prior to the log �le being initialised with the setOutputs method. If logging has
been used the �le must be closed prior to programme termination with:

Squeak : : c lo seLog () ;

When running as part of standard MAUS execution both Squeal initialisation and closing the log are
taken care of by the GlobalsManager and the user need do nothing.

An example use of Squeal to send text to standard output:

Squeal : : mout (Squeal : : debug) << "A message" << std : : endl ;

A short example programme illustrating use of Squeal is present in
bin/user/examples/logging/.

20

Chapter 5

Running the Monte Carlo

The simulation module provides particle generation routines, GEANT4 bindings to track particles
through the geometry and routines to convert modelled energy loss in detectors into digitised signals
from the MICE DAQ. The Digitisation models are documented under each detector. Here we describe
the beam generation and GEANT4 interface.

5.1 Beam Generation

Beam generation is handled by the MapPyBeamMaker module. Beam generation is separated into two
classes. The MapPyBeamGenerator has routines to assign particles to a number of individual beam
classes, each of which samples particle data from a prede�ned parent distribution. Beam generation is
handled by the beam datacard.

The MapPyBeamMaker can either take particles from an external �le, overwrite existing particles
in the spill, add a speci�ed number of particles from each beam de�nition, or sample particles from a
binomial distribution. The random seed is controlled at the top level and di�erent algorithms can be
selected in�uencing how this is used to generate random seeds on each particle.

Each beam de�nition has routines for sampling from a multivariate gaussian distribution or generating
ensembles of identical particles (called "pencil" beams here). Additionally it is possible to produce time
distributions that are either rectangular or triangular in time to give a simplistic representation of the
MICE time distribution.

The beam de�nition controls are split into four parts. The reference branch de�nes the cen-
troid of the distribution; the transverse branch de�nes the transverse coordinates, x, y, px, py; the
longitudinal branch de�nes the longitudinal coordinates - time and energy/momentum and the coupling
branch de�nes correlations between longitudinal and transverse. Additionally a couple of parameters are
available to control random seed generation and relative weighting between di�erent beam de�nitions.

In transverse, beams are typically sampled from a multivariate gaussian. The Twiss beam ellipse is
de�ned by

B⊥ = m


εxβx/p −εxαx 0 0
−εxαx εxγxp 0 0

0 0 εyβy/p −εyαy
0 0 −εyαy εyγyp

 (5.1)

The Penn beam ellipse is de�ned by,

B⊥ = mε⊥


β⊥/p −α⊥ 0 −L+ β⊥B0/2p
−α⊥ γ⊥p L − β⊥B0/2p 0

0 L − β⊥B0/2p β⊥/p −α⊥
−L+ β⊥B0/2p 0 −α⊥ γ⊥p

 (5.2)

where parameters can be controlled in datacards as described below. Note that using the datacards it is
possible to de�ne a beam ellipse that is poorly conditioned (determinant nearly zero). In this case MAUS
will print an error message like Warning: invalid value encountered in double_scalars for each
primary.

21

5.1.1 Beam Polarisation

It is also possible to pass a polarised beam through MAUS. A polarised beam can be generated using the
beam_polarisation variable on an individual beam parameter. Currently only one polarisation model
has been implemented, gaussian_unit_vectors. This throws a Gaussian in each of the x, y and z
directions and uses this to generate a spin vector. The spin vector is then normalised to 1. Correlations
are not implemented.

5.1.2 Amplitude Momentum Correlation

It is possible to introduce arti�cially a correlation between transverse amplitude (action) and momen-
tum. This can be of use for high emittance beams, such as those in MICE, where the time of �ight of
high amplitude particles is signi�cantly di�erent to the time of �ight of low amplitude particles. The
optional a-p_correlation dict enables one to specify a correlation C (see table 5.8). In this case, the
momentum_variable Wo is modi�ed according to

Wo = Wi(1 + CA). (5.3)

Wi is the momentum_variable as calculated by the longitudinal routines above, C is the correlation
magnitude and amplitude A is calculated using

A = |V|1/4m2(~uTV−1~u) (5.4)

where ~u is the particle phase space vector, m is the particle mass and V is the ideal beam matrix de�ned
by the transverse dict.

5.2 Getting the Right Answer

In MICE, the code is required to get the right answer for a number of di�erence use cases. MICE needs
accurate stepping through the complex �eld maps, correct energy loss and scattering in the emittance
absorbers and di�user and accurate energy deposition in the sensitive detectors and correct showering
especially in the downstream detectors. The Right Answer in this case is the one that agrees with
experiment.

5.2.1 Geometry

There are copious comments on setting up your own geometry in the relevant chapter. I only remark
here that you should

� Visualise the geometry.

� Set verbose_level to 1 so that MAUS reports the �eld con�guration in it's output �le.

� Check the �eld maps using e.g. bin/examples/make_field_map.py.

� Set check_volume_overlaps to True to call Geant4 internal checks for geometry consistency.

Otherwise it is highly unlikely that you will get the correct geometry.

5.2.2 Tracking

The principle tool that can be used to ensure a correct answer from tracking through the �eld maps
is the step size. This is controlled either from MiceModules by setting the G4StepMax parameter per
volume; or from data cards by setting the max_step_length parameter. Setting this parameter to a
small value increases the tracking time; setting it to a large value decreases the accuracy. Numerically,
100 mm is found to be a reasonable value for su�ciently accurate stepping through the �elds [citation:
C Rogers thesis]. No one has ever studied e�ect of miss distance on e.g. some of the MICE apertures.

It is also wise to avoid hard �eld edge boundaries in the cooling channel. MAUS uses by default
4th order Runge Kutta for numerical integration (RK4, stepping_algorithm = "ClassicalRK4"). For
each tracking step, RK4 calls the MAUS �eld map routines 4 times. Geant4/RK4 only knows about
the �eld value at these four points, and makes some smoothing approximation at intermediate points.

22

Table 5.1: Control parameters pertaining to all beam de�nitions.
Name Meaning
beam dict containing beam de�nition parameters.
The following cards should all be de�ned within the beam dict.

particle_generator Set to binomial to choose the number of particles by sampling from
a binomial distribution. Set to counter to choose the number of
particles in each beam de�nition explicitly. Set to file to generate
particles by reading an input �le. Set to overwrite_existing to
generate particles by overwriting existing primaries.

binomial_n When using a binomial particle_generator, this controls the num-
ber of trials to make. Otherwise ignored.

binomial_p When using a binomial particle_generator, this controls the prob-
ability a trial yields a particle. Otherwise ignored.

beam_file_format When using a �le particle_generator, set the input �le format -
options are

� icool_for009

� icool_for003,

� g4beamline_bl_track_file

� g4mice_special_hit

� g4mice_virtual_hit

� mars_1

� maus_virtual_hit

� maus_primary

beam_file When using a �le particle_generator, set the input �le name. En-
vironment variables are automatically expanded by MAUS.

file_particles_per_spill When using a �le particle_generator, this controls the number of
particles per spill that will be read from the �le.

random_seed Set the random seed, which is used to generate individual random
seeds for each primary (see below).

definitions A list of dicts, each item of which is a dict de�ning the distribution
from which to sample individual particles.

23

Table 5.2: Individual beam distribution parameters.
Name Meaning
The following cards should be inside a dict in the beam definitions list.

random_seed_algorithm Choose from the following options

� beam_seed: use the random_seed for all particles

� random: use a di�erent randomly determined seed for each particle

� incrementing: use the random_seed but increment by one each
time a new particle is generated

� incrementing_random: determine a seed at random before any par-
ticles are generated; increment this by one each time a new particle
is generated

weight When particle_generator is binomial or overwrite_existing, the
probability that a particle will be sampled from this distribution is given
by weight/(sumofweights).

n_particles_per_spill When particle_generator is counter, this sets the number of particles
that will be generated in each spill.

reference Dict containing the reference particle de�nition.
transverse Dict de�ning the longitudinal phase space distribution.
longitudinal Dict de�ning the longitudinal phase space distribution.
coupling Dict de�ning any correlations between transverse and longitudinal.
beam_polarisation Optional dict de�ning the polarisation of the beam. If this dict is not

included, the beam is taken to be unpolarised.
a-p_correlation Optional dict that de�nes a correlation between transverse amplitude and

longitudinal momentum. If this dict is not included, no such correlation
is introduced.

Table 5.3: Beam distribution reference de�nition.
Name Meaning
The following cards should be de�ned in each beam de�nition reference dict.

position dict with elements x, y and z that de�ne the reference position (mm).
momentum dict with elements x, y and z that de�ne the reference momentum direction. Nor-

malised to 1 at runtime.
particle_id PDG particle ID of the reference particle.
energy Reference energy.
time Reference time (ns).
random_seed Set to 0 - this parameter is ignored.

24

Table 5.4: Beam de�nition transverse parameters.
Name Meaning
The following cards should be de�ned in each beam de�nition transverse dict.

transverse_mode Options are

� pencil: x, px, y, py taken from reference

� uniform: Radius and pt randomly selected from uniform distribu-
tion for testing and systematic studies.

� penn: cylindrical beam symmetric in x and y

� constant_solenoid: cylindrical beam symmetric in x and y, with
beam radius calculated from on-axis B-�eld to give constant beam
radius along a solenoid.

� twiss: beam with decoupled x and y beam ellipses.

normalised_angular_

momentum
if transverse_mode is penn or constant_solenoid, set L.

emittance_4d if transverse_mode is penn or constant_solenoid, set ε⊥.
beta_4d if transverse_mode is penn, set β⊥.
alpha_4d if transverse_mode is penn, set α⊥.
bz if transverse_mode is constant_solenoid, set the B-�eld used to cal-

culate β⊥ and α⊥.
beta_x if transverse_mode is twiss, set βx.
alpha_x if transverse_mode is twiss, set αx.
emittance_x if transverse_mode is twiss, set εx.
beta_y if transverse_mode is twiss, set βy.
alpha_y if transverse_mode is twiss, set αy.
emittance_y if transverse_mode is twiss, set εy.
range_radius if transverse_mode is uniform, set the radial extent of the beam.
range_pt if transverse_mode is uniform, set the range of transverse momenta.
fit_solenoid if transverse_mode is uniform, specify the magnetic into which the beam

is being simulation. It ignores range_radius and sets the x and y values
such that the particles do no rotate outside their initial radius due to the
larmor rotations.

25

Table 5.5: Beam de�nition longitudinal parameters.
Name Meaning
The following cards should be de�ned in each beam de�nition longitudinal dict.

momentum_variable In all modes, set this variable to control which longitudinal variable will be
used to control the input beam. Options are energy, p, pz.

longitudinal_mode Options are

� pencil: time, energy/p/pz taken from reference

� gaussian: uncorrelated gaussians in time and energy/p/pz

� twiss: multivariate gaussian in time and energy/p/pz

� uniform: uniform in energy/p/pz and time taken from reference.

� uniform_time: gaussian in energy/p/pz and uniform in time.

� sawtooth_time: gaussian in energy/p/pz and sawtooth in time.

beta_l In Twiss mode, set βl
alpha_l In Twiss mode, set αl
emittance_l In Twiss mode, set εl
sigma_t In gaussian mode, set the RMS time.
sigma_p

sigma_energy

sigma_pz

In gaussian, uniform_time, sawtooth_timemode, set the RMS energy/p/pz.

cov(t,p)

cov(t,energy)

cov(t,pz)

In gaussian mode, set the covariance between p/energy/pz and time and
energy. It is an error if this results in a matrix that is not positive de�nite
(eigenvalues positive).

range_p In uniform mode, set the window of momenta that can be sample from from,
like: [100.0, 300.0]

t_start In uniform_time and sawtooth_time mode, set the start time of the parent
distribution

t_end In uniform_time and sawtooth_time mode, set the end time of the parent
distribution

Table 5.6: Beam de�nition coupling parameters.
Name Meaning
The following cards should be de�ned in each beam de�nition coupling dict.

coupling_mode Set to none - not implemented yet.

26

Table 5.7: Beam de�nition polarisation.
Name Meaning
The following cards should be de�ned in each beam de�nition beam_polarisation dict.

polarisation_mode If set to flat, the beam is taken as unpolarised. If set to
gaussian_unit_vectors, spin vector is given by a gaussian distribution in
x, y, z; the spin vector is then normalised to 1 before tracking.

beam_mean_x If beam_polarisation is set to gaussian_unit_vectors, the mean x value of
the gaussian.

beam_sigma_x If beam_polarisation is set to gaussian_unit_vectors, the sigma x value
of the gaussian.

beam_mean_y If beam_polarisation is set to gaussian_unit_vectors, the mean y value of
the gaussian.

beam_sigma_y If beam_polarisation is set to gaussian_unit_vectors, the sigma y value
of the gaussian.

beam_mean_z If beam_polarisation is set to gaussian_unit_vectors, the mean z value of
the gaussian.

beam_sigma_z If beam_polarisation is set to gaussian_unit_vectors, the sigma z value of
the gaussian.

Table 5.8: Beam de�nition amplitude-momentum correlation.
Name Meaning
The following cards should be de�ned in each beam de�nition a-p_correlation dict.

magnitude The magnitude of the amplitude-momentum correlation.
momentum_variable Optional parameter to specify the momentum variable W. Options are energy,

p, pz. If not speci�ed, defaults to momentum_variable from longitudinal

dict.

27

If the geometry presents a �eld inhomogeneity i.e. a hard edged boundary, it will severely degrade the
stability of the tracking. The way to �x this is to implement Geant4 volume boundaries on either side of
the edge of any �eld maps. This forces Geant4 to stop tracking, step over the �eld boundary, and then
start tracking again.

5.2.3 Energy Deposition and Showering

There are a couple of other considerations for handling energy deposition, decays and so forth. physics_model
is the master control variable, which tells Geant4 which physics model to use. The Geant4 mindset is
that Geant4 provides a library of physics processes, and that the defaults are not necessarily correct for
all use cases. This is di�erent to e.g. MARS or equivalent tools. Rogers has selected QGSP_BERT as a
reasonable default, following recommendation from G4Beamline developers.

The MICE beam is quite highly polarised. Polarised decay is possible to do in MAUS (polarised_decay
and spin_tracking), but it is poorly understood experimentally so it is not active by default. Be aware
that probably electron background estimation is wrong in MICE/MAUS.

If the physics you wish to study includes showering e�ects, check that you are happy with the
kinetic_energy_threshold, production_threshold and fine_grained_production_threshold pa-
rameters. The kinetic_energy_threshold sets the minimum energy of particles that will be tracked and
the production_threshold parameters control the minimum range of particles that will be produced.

The fine_grained_production_threshold sets the geant4 production threshold per particle and
per region. Regions are de�ned using the MiceModule Region string property, which can map several
volumes to the same region. fine_grained_production_threshold should be a dictionary that maps
the string name of a region to another dictionary. This dictionary should map the string name or pdg
encoded integer id in string format to the production threshold. For example, the entry in the datacards
�le might look like

fine_grained_production_threshold = {

"my_region":{

"e+":0.1,

"11":0.01,

"22":-1

}

}

which would set production thresholds for all MiceModules in my_region to 0.1 mm for positrons, 0.01
mm for electrons, and use the Geant4 defaults for gammas. All other particles would take their production
threshold defaults from production_threshold datacard.

5.3 GEANT4 Bindings

The GEANT4 bindings are encoded in the Simulation module. GEANT4 groups particles by run, event
and track. A GEANT4 run maps to a MICE spill; a GEANT4 event maps to a single inbound particle
from the beamline; and a GEANT4 track corresponds to a single particle in the experiment.

A number of classes are provided for basic initialisation of GEANT4.

� MAUSGeant4Manager: is responsible for handling interface to GEANT4. MAUSGeant4Manager
handles initialisation of the GEANT4 bindings as well as accessors for individual GEANT4 objects
(see below). Interfaces are provided to run one or many particles through the geometry, returning
the relevant event data. The MAUSGeant4Manager sets and clears the event action before each
run.

� MAUSPhysicsList: contains routines to set up the GEANT4 physical processes. Datacards settings
are provided to disable stochastic processes or all processes and set a few parameters. In the end,
the physics list set up gets called by the FieldPhaser.

� FieldPhaser: the �eld phaser is a MAUS-speci�c tool for automatically phasing �elds, for example
RF cavities, such that they ramp coincidentally with incoming particles. The FieldPhaser con-
tains routines to �re test ("reference") particles through the accelerator lattice and phase �elds
appropriately. The FieldPhaser phasing routines are called after GEANT4 is �rst initialised.

28

� DetectorConstruction: the DetectorConstruction routines provide an interface between the MAUS
internal geometry representation encoded in MiceModules and GEANT4. DetectorConstruction is
responsible for calling the relevant routines for setting up the general engineering geometry, calling
detector-speci�c geometry set-up routines and calling the �eld map set-up routines.

� VirtualPlanes: the VirtualPlanes routines are designed to extract particle data from the GEANT4
tracking independently of the GEANT4 geometry. The VirtualPlanes routines watches for steps
that step across some plane in physical space, or some time, or some proper time, and then
interpolates from the step ends to the plane in question.

� FillMaterials: (legacy) the FillMaterials routines are used to initialise a number of speci�c

� MAUSVisManager the MAUSVisManager is responsible for handling interfaces with the GEANT4
visualisation.

The GEANT4 Action objects provide interfaces for MAUS-speci�c function calls at certain points in
the tracking.

� MAUSRunAction: sets up the running for a particular spill. In MAUS, it just reinitialises the
visualisation.

� MAUSEventAction: sets up the running for a particular inbound particle. At the beginning of
each event, the virtual planes, tracking, detectors and stepping are all cleared. After the event the
event data is pulled into the event data from each element.

� MAUSTrackingAction: is called when a new track is created or destroyed. If keep_tracks datacard
is set to True, on particle creation, MAUSTrackingAction writes the initial and �nal track position
and momentum to the output data tree. If keep_steps is set to True MAUSTrackingAction gets
step data from MAUSSteppingAction and writes this also.

� MAUSSteppingAction: is called at each step of the particle. If keep_steps datacard is set
to True, output step data is recorded. MAUSSteppingAction kills particles if they exceed the
maximum_number_of_steps datacard. MAUSSteppingAction calls the VirtualPlanes routines on
each step.

� MAUSStackingAction: is called when a new track is created, prioritising particle tracking. Handles
killing particles based on the kinetic_energy_threshold, default_keep_or_kill and
keep_or_kill_particles datacards.

� MAUSPrimaryGeneratorAction: is called at the start of every event and sets the particle data for
each event. In MAUS, this particle generation is handled externally and so the MAUSPrimary-
GeneratorAction role is to look for the primary object on the Monte Carlo event and convert this
into a GEANT4 event object.

29

Table 5.9: Monte Carlo control parameters.
Name Meaning
General Monte Carlo controls.

simulation_geometry_filename Filename for the simulation geometry - searches �rst in �les
tagged by environment variable ${MICEFILES}, then in the local
directory.

simulation_reference_particle Reference particle used for phasing �elds. The format is as de-
�ned for a reference entry in a beam.

keep_tracks Set to boolean true to store the initial and �nal position/mo-
mentum of each track generated by MAUS.

keep_steps Set to boolean true to store every step generated by MAUS -
warning this can lead to large output �les.

check_volume_overlaps Set to a boolean value. Check for overlaps in volumes. If an
overlap is detected, Geant4 will report a warning and then quit.

everything_special_virtual Set to a boolean value. If true, all volumes will be made special
virtual and record e.g. energy deposited.

Table 5.10: Tracking control parameters.
Tracking control parameters.

max_step_length Default maximum step size during tracking. Override with
G4StepMax in MiceModule.

max_track_time Kill tracks with time above this time. Override with G4TimeMax
in MiceModule.

max_track_length Kill tracks with track length above this length. Override with
G4TrackMax in MiceModule.

maximum_number_of_steps Set to an integer value. Tracks taking more steps are assumed to
be looping and are killed.

kinetic_energy_threshold Kill tracks with initial kinetic energy below this threshold. Over-
ride with G4KinMin in MiceModule.

field_tracker_absolute_error Set absolute error on MAUS internal stepping routines - used by
e.g. VirtualPlanes to control accuracy of interpolation.

field_tracker_relative_error Set relative error on MAUS internal stepping routines - used by
e.g. VirtualPlanes to control accuracy of interpolation.

stepping_algorithm String to control the numerical integration routine - choose from
ClassicalRK4, SimpleHeum, ImplicitEuler, SimpleRunge, Ex-
plicitEuler or CashKarpRKF45.

spin_tracking Set to true to use G4 routines to precess the spin vector as par-
ticles go through EM �elds.

delta_one_step Accuracy with which Geant4 steps within a volume.
epsilon_min Geant4 minimum stepping relative error over a single step. Takes

precedence over delta_one_step.
epsilon_max Geant4 maximum stepping relative error over a single step. Takes

precedence over delta_one_step.
delta_intersection Accuracy with which Geant4 enters volume boundaries.
miss_distance Maximum distance between track and corners, used for estimat-

ing whether a track crosses a boundary.

30

Table 5.11: Physics list control parameters.
Physics list controls.

physics_model GEANT4 physics model used to set up the physics list.
physics_processes Choose which physics processes normal particles observe

during tracking. Options are

� normal particles will obey normal physics processes,
scattering and energy straggling will be active.

� mean_energy_loss particles will lose a deterministic
amount of energy during interaction with materials
and will never decay.

� none Particles will never lose energy or scatter during
tracking and will never decay.

reference_physics_processes Choose which physics processes the reference particle ob-
serves during tracking. Options are mean_energy_loss and
none. The reference particle can never have stochastic pro-
cesses enabled.

particle_decay Set to boolean true to enable particle decay; set to boolean
false to disable.

polarised_decay Set to boolean true to make muons decay according to stan-
dard physics for a polarised muon; set to boolean false to
make muons decay as if unpolarised. If polarised decay is
true, then spin tracking is automatically enabled, regardless
of the value of the spin_tracking datacard.

charged_pion_half_life Set the half life for charged pions.
muon_half_life Set the half life for muons.
production_threshold Set the geant4 production threshold. Uses geant4 defaults

if negative. Ignored if physics_processes are not normal.
fine_grained_production_threshold Set the geant4 production threshold per particle and per

region. See text.
kinetic_energy_threshold Threshold for kinetic energy of new particles at production.

Particles with kinetic energy below this value will not be
tracked.

default_keep_or_kill If set to true, keep particles with type not listed in
keep_or_kill_particles. If set to false, kill particles
with type not listed in keep_or_kill_particles

keep_or_kill_particles Maps string particle type name to boolean �ag. If set
to true, always keep particles of this type. If set to
false, always kill particles of this type. If not set, apply
default_keep_or_kill

31

Table 5.12: Visualisation control parameters.
Visualisation controls.

geant4_visualisation Set to boolean true to activate GEANT4 visualisation.
visualisation_viewer Control which viewer to use to visualise GEANT4 tracks. Currently only

vrmlviewer is compiled into GEANT4 by default. Users can recompile
GEANT4 with additional viewers enabled at their own risk.

visualisation_theta Set the theta angle of the camera.
visualisation_phi Set the phi angle of the camera.
visualisation_zoom Set the camera zoom.
accumulate_tracks Set to 1 to accumulate all of the simulated tracks into one vrml �le. 0 for

multiple �les.
default_vis_colour Set the RGB values to alter the default colour of particles.
pi_plus_vis_colour Set the RGB values to alter the colour of positive pions.
pi_minus_vis_colour Set the RGB values to alter the colour of negative pions.
mu_plus_vis_colour Set the RGB values to alter the colour of positive muons.
mu_minus_vis_colour Set the RGB values to alter the colour of negative muons.
e_plus_vis_colour Set the RGB values to alter the colour of positrons.
e_minus_vis_colour Set the RGB values to alter the colour of electrons.
gamma_vis_colour Set the RGB values to alter the colour of gammas.
neutron_vis_colour Set the RGB values to alter the colour of neutrons.
photon_vis_colour Set the RGB values to alter the colour of photons.

32

Chapter 6

Geometry

MAUS uses the on-line Con�guration Database to store all of its geometries. These geometries have been
transferred from CAD drawings which are based on the latest surveys and technical drawings available.
The CAD drawings are translated to a geometry speci�c subset of XML, the Geometry Description
Markup Language (GDML) prior to being recorded in the con�guration database. Translation of the
CAD drawings was accomplished through the use of a commercial software package known as Fast-RAD.
This can be done using a combination of the open source software packages FreeCAD and CADMesh to
translate the CAD drawings into a GEANT4 readable format; generation of an open source solution for
MAUS is in progress.

The CAD drawings contain the beam-line elements and the positions of the detector survey points.
These objects are described in the GDML �les using Tessellated solids to de�ne the shapes of the physical
volumes. The detectors themselves are described using an independently generated set of GDML �les
using GEANT4 standard volumes. An additional XML �le is appended to the geometry description
that assigns magnetic �elds and associates the detectors to their locations in the GDML �les generated
by Fast-RAD. This �le is initially written by the geometry maintainers and formatted to contain run
speci�c information during download.

The GDML format has a number of bene�ts. the �les can be read via a number of already existing
libraries in GEANT4 and ROOT for the purpose of independent veri�cation and validation. For example
the GEANT4 example �extended/persistancy/gdml/G01� was used extensively for validating the GDML
�les produced by Fast-RAD. Because it is a subset of XML, the data contained in the GDML �les
are readily accessible through the application of the �libxml2� python extension. The GDML are in
turn translated into the MAUS readable geometry �les either by directly accessing the data using the
python extension (which is the method applied to the detector objects) or through the use of EXtensible
Stylesheet Language Transformations (XSLT) which applies a set of prede�ned transformations to the
XML �les.

The following section shall describe how to use the available executable to access and use these
models.

6.1 Geometry Access Scripts

There are three executable �les available to users which reside in the directory /bin/utilities found
within your copy of MAUS. The three �les of interest are upload_geometry.py, download_geometry.py
and get_geometry_ids.py. These �les do the following.

Upload Geometry

1. Set up the Con�greader class and read the values provided by Con�gurationDefaults.py or by
custom con�gure �les.

2. Instantiate an Uploader class object using the upload directory and geometry note taken from
the con�guration �le.

3. The list of �les which is created by the Uploader class is used to compress the geometry �les
into one zip �le.

4. This zip �le is then used as the argument for the upload_to_CDB method which takes the
contents of the zip and then uploads this, as a single string to the CDB.

33

Optional If cleanup is speci�ed in the con�guration �le then the �le list and the original GDML �les
are the deleted leaving only the zip �le.

Download Geometry

1. Set up the Con�greader() class and read the values provided by Con�gurationDefaults.py or
by custom con�guration �les.

2. Instantiate a Downloader class object and downloads either the current, time speci�ed or run
number zipped geometry to a temporary cache location.

3. The zip �le is then unzipped in this location.

4. The Formatter class is called which formats the GDML �les. The formatting alters the schema
location of these �les and points them to the correct local locations of the Materials GDML
�le. This formatting leaves the original GDMLs in the temporary cache and places the new
formatted �les in the download directory speci�ed by the con�guration �le.

5. GDMLtoMAUS is then called with the location of the new formatted �les as its argument. This
class converts the CAD GDMLs to the MICE Module text �les using the XSLT stylesheets pre-
viously described and the Detector GDMLs to MICE modules using a python driven routine.
Note that this step is used even when the geometry is designed for use with the GDMLParser.

Optional If speci�ed in the con�guration �le the temporary cache location is removed along with the
zip �le and unzipped �les.

Get Geometry IDs 1. Set up the Con�greader() class and read the values provided by Con�gura-
tionDefaults.py or by custom con�guration �les. This �le takes start and stop time arguments
to specify a period to search the CDB.

2. A CDB class object is then instantiated with the server speci�ed in the con�guration �le.

3. The get ids method from the CDB class is called and the python dict which is downloaded is
formatted and either printed to screen or to �le as speci�ed in the con�guration �le.

Two other python �les are also present in the utilities directory; process_geometry.py which �ts, for-
mats, and processes the GDML �les assuming the download is complete, and download_�t_geometry.py
which downloads, formats, and processes the GDML �les while applying the location �t� the GDML
�les generated for Step IV running will have the �t applied prior to upload. To use these �les the
user must use the arguments in the �Con�gurationDefaults.py� �le. The arguments relating to these
executables are as follows.

6.2 Using the Geometry Download Executables

The three executables described above will allow the user to accomplish three di�erent tasks; adding a new
geometry to the database, checking what geometries are available, and downloading the desired geometry.
The majority of users will not need to upload a new geometry. At present this can only be done from the
MLCR. The second two operations are of primary interest for the everyday user. A list of the CAD based
geometries appears at http://cdb.mice.rl.ac.uk/cdbviewer/, and selecting the geometry tab. The
user should be advised, however, that this list does not contain all of the information necessary to run
the geometry download procedure. The best procedure is to use the get_geometry_ids.py executable
described above. For example to get all available entries in the geometry database a user should run the
command (from the maus root directory)

> python /bin/utilities/get_geometry_ids.py

--get_ids_start_time ``1999-01-01 00:00:00'' --get_ids_stop_time ``2035-01-01 00:00:00''

By default, the output �le is saved to $MAUS_ROOT_DIR/tmp/geometry_ids.txt. The typical output
looks like the following:

[...]

Geometry Number = 46

Geometry Note = Step I geometry consistent with the October 2011 data run. All detector

descriptions consistent and up to date.

ValidFrom = 2011-12-01 19:17:00

34

http://cdb.mice.rl.ac.uk/cdbviewer/

Table 6.1: Geometry control parameters.
Geometry controls.

cdb_upload_url Sets the upload url relating to the Con�guration
Database.

cdb_download_url Sets the download url relating to the Con�guration
Database.

cdb_cc_download_url Sets the download url relating to the Con�guration
Database for the super-conducting channels only.

geometry_download_wsdl Name of the web service used for downloads.
geometry_download_directory Set the directory where you wish the geometry to be

downloaded to.
geometry_download_by This can be set to either current, id or run_number.

Current will download the current valid geometry stored
on the CDB. ID will download the geometry for the ID
speci�ed N.B ID numbers can be found using the get
geometry ids executable. Run_number will download
the geometry along with control room information for
speci�ed run including the beam-line currents.

geometry_download_run_number Set the number of the run to be downloaded.
geometry_download_beamline_for_run Set the beamline information to match a run indepen-

dent of the geometry download. To be used when ge-
ometry is downloaded by ID.

geometry_download_coolingchannel_tag Download the cooling channel data matching a speci�c
tag.

geometry_download_id Set the number of the geometry ID to be downloaded.
geometry_download_cleanup Set to True in order to cleanup the temporary �les cre-

ated during the download process. These are the zip
�le downloaded and the original GDML �les from this
zip �le.

g4_step_max Set the G4 step max number which will be set in the
ParentGeometryFile. This relates to the size of steps
carried out during the simulation.

geometry_upload_wsdl Name of the web service used for uploads. For develop-
ers use only.

geometry_upload_directory Set the the directory which stores the Fast-RAD pro-
duced GDML �les which will be stored on the CDB.
For Developers use only.

geometry_upload_note Write the description of the geometry which is going to
be uploaded. This should describe what is in the beam
line speci�cally what is new to the model. It should
also include any other information the developer wishes
the user to know. For developers use only.

geometry_upload_valid_from Set the date-time format of the date when this geometry
about to be uploaded is valid from. For developers use
only.

geometry_upload_cleanup Set to True in order to cleanup the temporary �les cre-
ated during the upload process. These are the �le con-
taining the list of GDMLs to be uploaded and also the
original GDML �les. For developers use only.

get_ids_start_time Set the start time of the period which you would like to
get the ids from the con�guration database. Must be
in date-time format.

get_ids_stop_time Set the stop time of the period which you would like to
get the ids from the con�guration database. Must be
in date-time format.

get_ids_create_file Set to True in order to create a �le which lists the ge-
ometries available within the time period speci�ed. If
set to False the geometry information will be printed to
screen.

35

Date Created = 2015-01-07 14:19:51.055000

Geometry Number = 47

Geometry Note = Step I geometry consistent with the October 2013 EMR comissioning run.

All detector descriptions consistent and up to date.

ValidFrom = 2013-10-06 19:17:00

Date Created = 2015-01-07 14:30:32.987000

Geometry Number = 49

Geometry Note = Step IV geometry with detectors including the TOFs, Ckov, EMR, Tracker,

and KL included as GDML files. Update to the EMR geometry.

ValidFrom = 2034-01-03 19:17:00

Date Created = 2015-03-23 17:24:23.079000

Geometry Number = 50

Geometry Note = Step IV geometry with detectors including the TOFs, Ckov, EMR, Tracker,

and KL included as GDML files. Written for GDMLParser. Diffuser

corrected to match design specification.

ValidFrom = 2034-05-13 19:17:00

Date Created = 2015-05-14 16:29:01.124000

Three di�erent �avors of geometry are represented here. The �rst is the geometry of the Step I
geometry as it existed in the hall during data collection in Autumn 2013 (id 47). This description
includes the survey information taken prior to data collection although the positions of the detectors
have not been adjusted to match that information in the upload; a �t mut be done at download time.
The second is a prospective Step IV geometry based on the CAD geometry (id 49). This geometry was
intended to be used after the MICE module translation. In contrast the third type of geometry is meant
to be used with the GDMLParser (id 50). This geometry should load in a much shorter time than the
MICE module translation due to the optimized treatment of the tesselated solid objects. Both of these
last two cases do not contain survey information and are therefore dated to be valid from a date far in
the future (2034).

The CAD-based geometry can be downloaded via a number of di�erent modes. The simplest way
is to download the geometry by its id number. From the MAUS root directory the debug geometry as
described above can be downloaded with the command

> python bin/utilities/download_geometry.py --geometry_download_id 50

By default the unformatted GDML �les will be removed with this command. If the user wishes to
download the full geometry without removing the unformatted GDML �les because that user wants to
run a systematic study requiring reprocessing the geometry then the following command should be used:

> python bin/utilities/download_geometry.py --geometry_download_id 50

--geometry_download_cleanup False

A more complicated use is to test a prospective geometry with a prede�ned beamline setting as de�ned
using a �tagged� beamline:

> python bin/utilities/download_geometry.py --geometry_download_id 50

--geometry_download_beamline_tag '6-200+M0'

A common usage for the geometry download is to reproduce a given run. To simulate a representative
run from the 2013 EMR run the following command should be used:

> python bin/utilities/download_fit_geometry.py --geometry_download_by run_number

--geometry_download_run 5519

This function reads the beamline currents from the con�guration database and adjusts the �elds of the
beamline magnets appropriately.

A �nal application is to download the latest uploaded geometry. This function can be completed
using the following command:

> python bin/utilities/download_fit_geometry.py --geometry_download_by current

36

All of these commands described will by default place the geometry in the directory
$MAUS_ROOT_DIR/�les/geometry/download. This directory may be changed using the
--geometry_download_directory �ag. To use the downloaded geometry in the simulation, the
--simulation_geometry_filename �ag must be set to the download directory.

6.3 A Little GDML

While the detectors are already de�ned and the beam line elements are de�ned from the CAD information,
it is potentially useful for users and developers to understand these data structures. The overall structure
of a GDML �le is always the same; the lithium hydride disk absorber is described using the following
lines

<?xml ve r s i on ="1.0" encoding="UTF−8" standa lone="no" ?>
<gdml xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t ance " x s i :

noNamespaceSchemaLocation="http :// s e r v i c e−s p i . web . cern . ch/ s e rv i c e−s p i /app/
r e l e a s e s /GDML/schema/gdml . xsd">

<de f i n e/>
<mater ia l s>

<i s o t ope name="Li6 " Z="3" N="6" formula="6Li">
<MEE value ="6.015122" un i t="eV"/>
<D value ="0.534" un i t="g/cm3"/>
<atom value ="6.00" un i t="g/mole"/>

</i sotope>
<i s o t ope name="Li7 " Z="3" N="7" formula="7Li">

<MEE value ="7.016004" un i t="eV"/>
<D value ="0.534" un i t="g/cm3"/>
<atom value ="7.00" un i t="g/mole"/>

</i sotope>
<element name="Li">

<f r a c t i o n n="0.075" r e f="Li6"/>
<f r a c t i o n n="0.925" r e f="Li7"/>

</element>
<element name="H" N="1" Z="1" formula="H">

<atom value ="1.008" un i t="g/mole"/>
</element>
<mate r i a l name="LITHIUM_HYDRIDE">

<D value ="0.78" un i t="g/cm3"/>
<composite n="1" r e f="Li"/>
<composite n="1" r e f="H"/>

</mater ia l>
</mater ia l s>
<so l i d s >

<tube rmax="225.0" z="65" l u n i t="mm" de l t aph i ="360" aunit="degree " name="
d i sk_so l id"/>

</s o l i d s >
<st ruc ture>

<volume name="Disk_LiH">
<mat e r i a l r e f r e f="LITHIUM_HYDRIDE"/>
<s o l i d r e f r e f="d i sk_so l id"/>
<aux i l i a r y auxtype="BlueColour " auxvalue="0.5"/>
<aux i l i a r y auxtype="Sen s i t i v eDe t e c t o r " auxvalue="Spe c i a lV i r t u a l "/>

</volume>
</st ruc ture>
<setup name="Defau l t " ve r s i on="1.0">

<world r e f="Disk_LiH"/>
</setup>

</gdml>

More fundamental de�nitions appear at the top while more derived objects appear at the bottom
culminating in the �world� de�nition as the last object. Variables are de�ned in the �de�ne� section,
material de�nitions appear in the �materials� section, solid objects used in the de�nition of the struc-
ture appear in the �solids� section, and the volumes making up the simulated geometry appear in the

37

�structure� section. A little more detail and MICE speci�c examples are given below, but it is highly
suggested that an interested user refer to the �GDML Users Guide�1.

6.3.1 De�ne

This is where constants, matrices, and variables are de�ned. The obvious bene�t is that any variables
de�ned here may be referenced multiple times throughout the GDML document. Trivial examples include
the de�nition of pi or the identity rotation. A slightly more interesting example is the use of a matrix
in EMR.gdml to indicate whether a 90◦ rotation needs to be applied to a scintillator bar or a plane at a
given location.

6.3.2 Materials

All materials are de�ned internally to the GDML �le. Each detector has only the materials used in its
construction de�ned in the source �le, while a stock summary of all materials used are written to the
�les derived from the MICE engineering drawings. Materials are composed of elements or mixtures of
elements de�ned by the mass fraction or the atom count.

6.3.3 Solids

The de�nition of solid objects parallels the de�nition of solids in Geant. Primitive solids such as spheres,
tubes, cones, and boxes, may be explicitly de�ned. All of the detectors are de�ned entirely using
primitive volumes. More complicated, tessellated solids may also be de�ned, with the vertices written to
the �de�ne� section of the code. The MICE engineering drawings are de�ned entirely using tessellated
solids using the FastRAD package.

6.3.4 Structure

De�nition of the geometry volume is contained in the structure section of the �le. Volumes are de�ned
based on references to prede�ned solids and materials. Daughter volumes to objects may be de�ned
through the use of physvol and paramvol. Relative positions and rotations of daughter objects are
de�ned as part of these de�nitions. Loops and ensembles may also be used to de�ne multiple copies of
objects displaced in position or rotations.

6.3.5 Additional Features and Sensitive Detectors

When de�ning a volume it is possible to de�ne auxiliary properties. These properties do not a�ect the
structural behaviour of the detector within the simulation but may be used to alter the properties of the
simulation. An example is the sensitive detector de�nition. For every volume with a auxiliary property
SensitiveDetector a matching sensitive detector object is constructed and linked to the source volume.
The requirements of the MICE sensitive detector objects to use detector identity information explicitly
written to the MICE module �les have forced the GDML �les to avoid the use of loops for the de�nition
of repeated objects within the TOFs and the Trackers. No such requirement exists for the de�nition
of sensitive detectors in the EMR because the sensitive detectors are de�ned using GEANT's native
touchable volume de�nitions.

6.4 Creation of New Geometries in MAUS

A python class, CADModuleExtraction, is available that automatically generates a set of geometry �les
suitable for upload to CDB. It is run during the course of the standard installation tests to provide a
native version of the Step IV geometry but this class should not be run by the casual user. To use this
class the user must provide a GDML �le containing references to all of the GDML �les generated from the
CAD and the detector GDML �les positioned in their approximate locations (which should be furnished
by a subset of the CAD drawings) as well as the location of a MAUS information �le, which need not
be in the same directory as the source GDML �le. A destination directory and �le name must also be
provided. The script then runs through the referenced GDML �les and copies the objects contained
therein to a new set of de�ned by location, instead of by material which is the arrangement required by

1http://gdml.web.cern.ch/GDML/doc/GDMLmanual.pdf

38

http://gdml.web.cern.ch/GDML/doc/GDMLmanual.pdf

the CAD model. This processing is required to make a single set of �les that can be read into GEANT4
e�ciently. The output of this script may be uploaded to CDB after applying corrections to the detector
locations based on the �ts to the survey information and passing the validation tests.

39

Chapter 7

How to De�ne a Geometry

Mice Modules are the objects that control the geometry and �elds that are simulated in MAUS. They are
used in conjunction with a datacard �le, which provides global run control parameters. Mice Modules
are created by reading in a series of text �les when MAUS applications are run.

This geometry information is used primarily by the Simulation application for tracking of particles
through magnetic �elds. A few commands are speci�c to detector Reconstruction and accelerator beam
Optics applications.

The Mice Modules are created in a tree structure. Each module is a parent of any number of child
modules. Typically the parent module will describe a physical volume, and child modules will describe
physical volumes that sit inside the parent module. Modules cannot be used to describe volumes that
do not sit at least partially inside the volume if the parent module.

Each Mice Module �le consists of a series of lines of text. Firstly the Module name is de�ned. This
is followed by an opening curly bracket, then the description of the module and the placement of any
child modules, and �nally a closing curly bracket. Commands, curly brackets etc must be separated by
an end of line character.

Comments are indicated using either two slashes or an exclamation mark. Characters placed after a
comment on a line are ignored.

MAUS operates in a right handed coordinate system (x, y, z). In the absence of any rotation, lengths
are considered to be extent along the z -axis, widths to be extent along the x -axis and heights to be extent
along the y-axis. Rotations (θx, θy, θz) are de�ned as a rotation about the z-axis through θz, followed by
a rotation about the y-axis through θy, followed by a rotation about the x-axis through θx.

7.0.1 Con�guration File

The Con�guration �le places the top level objects in MICE. The location of the �le is controlled by the
datacard simulation_geometry_file_name. MAUS looks for the con�guration �le in the �rst instance
in the directory

${MICEFILES}/Models/Configuration/<MiceModel>

where ${MICEFILES} is a user-de�ned environment variable. If MAUS fails to �nd the �le it searches
the local directory.

The world volume is de�ned in the Con�guration �le and any children of the world volume are
referenced by the Con�guration �le. The Con�guration �le looks like

Configuration <Configuration Name>

{

Dimensions <x> <y> <z> <Units>

<Properties>

<Child Modules>

}

<Configuration Name> is the name of the con�guration. Typically the Con�guration �le name is
given by <Configuration Name>.dat. The world volume is always a rectangular box centred on (0, 0, 0)
with x, y, and z extent set by the Dimensions. Properties and Child Modules are described below and
added as in any Module.

40

Substitutions

It is possible to make keyword substitutions that substitutes all instances of <name> with <value> in all
Modules. The syntax is

Substitution <name> <value>

<name> must start with a single $ sign. Substitutions must be de�ned in the Con�guration �le. Note
this is a direct text substitution in the MiceModules before the modules are parsed properly. So for
example,

Substitution $Sub SomeText

PropertyString FieldType \$Sub}

PropertyDouble \$SubValue 10}

would be parsed as MAUS like

PropertyString FieldType SomeText}

PropertyDouble SomeTextValue 10}

Expressions

The use of equations in properties of type double and Hep3Vector is also allowed in place of a single
value. So, for example,

PropertyDouble FieldStrength 0.5*2 T

would result in a FieldStrength property of 1 Tesla.

Expression Substitutions

Some additional variables can be de�ned in speci�c cases by MAUS itself for substitution into experssions,
in which case they will start with @ symbol. For these variable substitutions, it is only possible to make
the substitution into expressions. So for example,

PropertyDouble ScaleFactor 2*@RepeatNumber

Would substitute @RepeatNumber into the expression. @RepeatNumber is de�ned by MAUS when
repeating modules are used (see RepeatModule2, below). Note the following code is not valid

PropertyString FileName File@RepeatNumber //NOT VALID

This is because Expression Substitutions can only be used in an expression (i.e. an equation).

7.0.2 Module Files

Children of the top level Mice Module are de�ned by Modules. MAUS will attempt to �nd a module in
an external �le. The location of the �le is controlled by the parent Module. Initially MAUS looks in the
directory

${MICEFILES}/Models/Modules/<Module>

If the Mice Module cannot be found, MAUS searches the local directory. If the module �le still cannot
be found, MAUS will issue a warning and proceed.

The Module description is similar in structure to the Con�guration �le:

Module <Module Name>

{

PropertyString Volume <Volume Type>

PropertyHep3Vector Dimensions <Dimension1> <Dimension2> <Dimension3> <Units>

<Properties>

<Child Modules>

}

<Module Name> is the name of the module. Typically the Module �le name is given by <Module Name>.dat.
The de�nition of Volume, Dimensions, Properties and Child Modules are described below.

41

Table 7.1: My caption
Volume Dimension1 Dimension2 Dimension3
None No dimensions required. Note cannot de�ne daughter Modules for this volume type.
Cylinder Radius Length in z Not used (leave blank)
Box Width in x Height in y Length along z
Tube Inner Radius Outer Radius Length in z
Trapezoid Half Width in x Half Height in y Half length in z
Wedge See documentation below.
Polycone No dimensions required. Volume de�ned from external �le.
Quadrupole No dimensions required. Dimensions de�ned from module properties.
Multipole No dimensions required. Dimensions de�ned from module properties.
Boolean No dimensions required. Dimensions de�ned from module properties.
Sphere See documentation below.

7.0.3 Volume and Dimensions

The volume described by the MiceModule can be one of several types. Replace <Volume Type> with the
appropriate volume below. Cylinder, Box and Tube de�ne cylindrical and cuboidal volumes. Polycone
de�nes an arbitrary volume of rotation and is described in detail below. Wedge describes a wedge with
a triangular projection in the y-z plane and rectangular projections in x-z and x-y planes. Quadrupole
de�nes an aperture with four cylindrical pole tips.

In general, the physical volumes that scrape the beam are de�ned independently of the �eld maps.
This is the more versatile way to do things, but there are some pitfalls which such an implementation
introduces. For example, in hard-edged �elds like pillboxes, tracking errors can be introduced when
MAUS steps into the �eld region. This can be avoided by adding windows (probably made of vacuum
material) to force GEANT4 to stop tracking, make a small step over the �eld boundary, and then restart
tracking inside the �eld. However, such details are left for the user to implement.

7.0.4 Properties

Many of the features of MAUS that can be enabled in a module are described using properties. For
example, properties enable the user to de�ne detectors and �elds. Properties can be either of several
types: PropertyDouble, PropertyString, PropertyBool, PropertyHep3Vector or PropertyInt. A property
is declared via

<Property Type> <Property Name> <Value> <Units if appropriate>

Di�erent properties that can be enabled for Mice Modules are described elsewhere in this document.
Properties of type PropertyDouble and PropertyHep3Vector can have units. Units are de�ned in the
CLHEP library. Units are case sensitive; MAUS will return an error message if it fails to parse units.
Combinations of units such as T/m or N*m can be de�ned using '*' and '/' as appropriate. Properties
cannot be de�ned more than once within the same module.

7.0.5 Child Modules

Child Modules are de�ned with a position, rotation and scale factor. This places, and rotates, the child
volume and any �elds present relative to the parent volume. Scale factor scales �elds de�ned in the child
module and any of its children. Scale factors are recursively multiplicative; that is the �eld generated by
a child module will be scaled by the product of the scale factor de�ned in the parent module and all of
its parents.

The child module de�nition looks like:

Module <Module File Name>

{

PropertyHep3Vector Position <x position> <y position> <z position> <Units>

PropertyHep3Vector Rotation <x rotation> <y rotation> <z rotation> <Units>

PropertyDouble ScaleFactor <Value>

<Define volume, dimensions and properties for this instance only>

}

42

MAUS searches for <Module File Name> �rst relative to ${MICEFILES}/Models/Modules/ and subse-
quently relative to the current working directory. The position and rotation default to 0, 0, 0 and the
scale factor defaults to 1.

• Volume, Dimension and Properties of the child module can be de�ned at the level of the parent;
in this case these values will be used only for this instance of the module.

• If no �le can be found, MAUS will press on regardless, attempting to build a geometry using the
information de�ned in the parent volume.

7.0.6 Module Hierarchy and GEANT4 Physical Volumes

Figure 7.1: The diagram shows a schematic for a square placed inside a cylinder inside a rectangle. This
nesting must be replicated in the MiceModules in order for the volumes to be correctly represented by
MAUS.

MAUS enables users to place arbitrary physical volumes in a GEANT4 geometry. The formatting of
MAUS is such that users are encouraged to use the GEANT4 tree structure for placing physical volumes.
This is a double-edged sword, in that it provides users with a convenient interface for building geometries,
but it is not a terribly safe interface.

Consider the cartoon of physical volumes shown above. Here there is a blue volume sitting inside
a red volume sitting inside the black world volume. For the volumes to be represented properly, the
module that represents the blue volume MUST be a child of the module that represents the red volume.
The module that represents the red volume MUST, in turn, be a child of the module that represents the
black volume, in this case the Con�guration �le.

What would happen if we placed the blue volume directly into the Black volume, i.e. the Con�guration
�le? GEANT4 would silently ignore the blue volume, or the red volume, depending on the order in which
they are added into the GEANT4 geometry. What would happen if we placed the blue volume overlapping
the red and black volumes? The behaviour of GEANT4 is not clear in this case.

• Never allow a volume to overlap any part of another volume that is not it's direct parent.

It is possible to check for overlaps by setting the datacard CheckVolumeOverlaps to 1.

7.0.7 A Sample Con�guration File

Below is listed a sample con�guration �le, which is likely to be included in the �le ExampleCon�gura-
tion.dat; the actual name is speci�ed by the datacard MiceModel.

Configuration ExampleConfiguration

{

Dimensions 1500.0 1000.0 5000.0 cm

PropertyString Material AIR

43

Substitution $MyRedColour 0.75

Module BeamLine/SolMag.dat

{

Position 140.0 0.0 -2175.0 cm

Rotation 0.0 30.0 0.0 degree

ScaleFactor 1.

}

Module BeamLine/BendMag.dat

{

Position 0.0 0.0 -1935.0 cm

Rotation 0.0 15.0 0.0 degree

ScaleFactor 1.

}

Module NoFile_Box1

{

Volume Box

Dimension 1.0 1.0 1.0

Position 0.0 0.0 200.0 cm

Rotation 0.0 15.0 0.0 degree

PropertyString Material Galactic

PropertyDouble RedColour $MyRedColour

}

Module NoFile_Box2}

{

Volume Box

Dimension 0.5 0.5 0.5*3 m //z length = 0.5*3 = 1.5 m

Rotation 0.0 15.0 0.0 degree //Rotation relative to parent

PropertyString Material Galactic

PropertyDouble RedColour $MyRedColour

}

}

7.0.8 A Sample Child Module File

Below is listed a sample module �le, which is likely to be included in the �le SolMag.dat ; the actual
location is speci�ed by the module or con�guration that calls FCoil. The module contains a number of
properties that de�ne the �eld.

Module SolMag

{

Volume Tube

Dimensions 263.0 347.0 210.0 mm

PropertyString Material Al

PropertyDouble BlueColour 0.75

PropertyDouble GreenColour 0.75

//field}

PropertyString FieldType Solenoid

PropertyString FileName focus.dat

PropertyDouble CurrentDensity 1.

PropertyDouble Length 210. mm

PropertyDouble Thickness 84. mm

PropertyDouble InnerRadius 263. mm

}

44

Chapter 8

Geometry and Tracking MiceModule

Properties

In general, MAUS treats physical geometry distinct from �elds. Fields can be placed overlapping physical
objects, or entirely independently of them, as the user desires. Properties for various aspects of the
physical and engineering model of the simulation are described below. This includes properties for
sensitive detectors.

8.1 General Properties

There are a number of properties that are applicable to any MiceModule.

Property Type Description
Material string The material that the volume is made up from

Invisible bool
Set to 1 to make the object invisible in visualisation, or 0 to make
the object visible.

RedColour double

GreenColour double

BlueColour double

Alter the colour of objects as they are visualised

G4StepMax double
The maximum step length that Geant4 can make in the volume.
Inherits values from the parent volumes.

G4TrackMax double

G4TimeMax double

The maximum track length and particle time of a track. Tracks out-
side this bound are killed. Inherits values from the parent volumes.

G4KinMin double
The minimum kinetic energy of a track. Tracks outside this bound
are killed. Inherits values from the parent volumes.

SensitiveDetector string
Set to the type of sensitive detector required. Possible sensitive de-
tectors are TOF, SciFi, CKOV, SpecialVirtual, Virtual, Envelope or
EMCAL.

Region string

Allocate the volume to the named Geant4 Region. This is
used for setting up production thresholds (see simulation chap-
ter). Child modules are automatically assigned to the parent
module's region. The Root module is automatically assigned to
DefaultRegionForTheWorld.

8.2 Sensitive Detectors

A sensitive detector (one in which hits are recorded) can be de�ned by including the SensitiveDetector
property. When a volume is set to be a sensitive detector MAUS will automatically record tracks entering,
exiting and crossing the volume. Details such as the energy deposited by the track are sometimes also
recorded in order to enable subsequent modelling of the detector response.

Some sensitive detectors use extra properties.

45

8.2.1 Scintillating Fibre Detector (SciFi)

8.2.2 Cerenkov Detector (CKOV)

8.2.3 Time Of Flight Counter (TOF)

8.2.4 Special Virtual Detectors

Special virtual detectors are used to monitor tracking through a particular physical volume. Normally
particle tracks are written in the global coordinate system, although an alternate coordinate system can
be de�ned. Additional properties can be used to parameterise special virtual detectors.

Property Type Description

ZSegmentation int

PhiSegmentation int

RSegmentation int

Set the number of segments in the detector in Z, R or f. Defaults
to 1.

SteppingThrough bool

SteppingInto bool

SteppingOutOf bool

SteppingAcross bool

Set to true to record tracks stepping through, into, out of or across
the volume. Defaults to true.

Station int

De�ne an integer that is written to the output �le to identify
the station. Defaults to a unique integer identi�er chosen by
MAUS, which will be di�erent each time the same Special Vir-
tual is placed.

LocalRefRotation
Hep3
Vector

If set, record hits relative to a reference rotation in the coordinate
system of the SpecialVirtual detector.

GlobalRefRotation
Hep3
Vector

If set, record hits relative to a reference rotation in the coordinate
system of the Con�guration.

LocalRefPosition
Hep3
Vector

If set, record hits relative to a reference position in the coordinate
system of the SpecialVirtual detector.

GlobalRefPosition
Hep3
Vector

If set, record hits relative to a reference position in the coordinate
system of the Con�guration.

8.2.5 Virtual Detectors

Virtual detectors are used to extract all particle data at a particular plane, irrespective of geometry.
Virtual detectors do not need to have a physical volume. The plane can be a plane in z, time, proper
time, or a physical plane with some arbitrary rotation and translation.

Property Type Description

IndependentVariable String

• If set to t, particle data will be written for particles at the
time de�ned by the PlaneTime property.

• If set to tau, particle data will be written for particles at the
proper time de�ned by the PlaneTime property.

• If set to z, particle data will be written for particles crossing
the module's z-position.

• If set to u, particle data will be written for particles crossing
a plane extending in x and y.

46

Property Type Description

PlaneTime Double
If IndependentVariable is t or tau, particle data will be written
out at this time. Mandatory if IndependentVariable is t or tau.

RadialExtent Double
If set, particles outside this radius in the plane of the detector will
not be recorded by the Virtual detector.

GlobalCoordinates Bool
If set to 0, particle data is written in the coordinate system of the
module. Otherwise particle data is written in global coordinates.

MultiplePasses String

Set how the VirtualPlane handles particles that pass through more
than once. If set to Ignore, particles will be ignored on second
and subsequent passes. If set to SameStation, particles will be
registered with the same station number. If set to NewStation,
particles will be registered with a NewStation number given by
the (total number of stations) + (this plane's station number), i.e.
a new station number appropriate for a ring geometry.

AllowBackwards Bool
Set to false to prevent backwards-going particles from being
recorded. Default is true.

8.2.6 Envelope Detectors

Envelope detectors are a type of Virtual detector that take all of the properties listed under virtual
detectors, above. In addition, in the optics application they can be used to interact with the beam
envelope in a special way. The following properties can be de�ned for Envelope Detectors in addition to
the properties speci�ed above for virtual detectors.

The The EnvelopeOut properties are used to make output from the envelope for use in the Optics
optimiser.

47

EnvelopeOut1_Name String
De�nes the variable name that can be used as an expression sub-
stitution at the end of each iteration, typically substituted into
the Score parameters in the optimiser (see optimiser, below).

EnvelopeOut1_Type String

De�nes the type of variable that will be calculated for the substi-
tution. Options are

� Mean

� Covariance

� Standard_Deviation

� Correlation

� Bunch_Parameter

EnvelopeOut1_Variable String

De�nes the variable that will be calculated for the substitution.
Options are for Bunch_Parameter

� emit_6d : 6d emittance

� emit_4d: 4d emittance (in x-y space)

� emit_t: 2d emittance (in time space)

� emit_x: 2d emittance (in x space)

� emit_y: 2d emittance (in y space)

� beta_4d: 4d transverse beta function

� beta_t: 2d longitudinal beta function

� beta_x: 2d beta function (in(x space)

� beta_y: 2d beta function (in y space)

� alpha_4d: 4d transverse alpha function

� alpha_t: 2d longitudinal alpha function

� alpha_x: 2d alpha function (in(x space)

� alpha_y: 2d alpha function (in y space)

� gamma_4d: 4d transverse gamma function

� gamma_t: 2d longitudinal gamma function

� gamma_x: 2d gamma function (in(x space)

� gamma_y: 2d gamma function (in y space)

� disp_x: x-dispersion

� disp_y: y-dispersion

� ltwiddle: normalised angular momentum

� lkin: standard angular momentum

For Mean, Standard_Deviation, Covariance and Correlation, vari-
ables should be selected from the options

� x: x-position

� y:y-position

� t: time

� px: x-momentum

� py: y-momentum

� E: energy

For Mean, a single variable should be selected and value corre-
sponding to the reference trajectory will be returned.
For Standard_Deviation, a single variable should be selected and
the 1 sigma beam size will be returned.
For Covariance and Correlation, two variables should be selected
separated by a comma.

48

8.3 Unconventional Volumes

It is possible to de�ne a number of volumes that use properties rather than the Dimensions keyword to
de�ne the volume size.

Volume Trapezoid

Volume Trapezoid gives a trapezoid which is not necessarily isosceles. Its dimensions are given by:

Property Type Description
TrapezoidWidthX1 Double Gives width1 in x
TrapezoidWidthX2 Double Gives width2 in x
TrapezoidWidthY1 Double Gives height1 in y
TrapezoidWidthY2 Double Gives height2 in y
TrapezoidLengthZ Double Gives length along z

8.3.1 Trapezoid Volume

A Trapezoid Volume is like a Wedge Volume (look visualization below) with the possibility to have
di�erent values for x width and 2 (non-zero) values for y.

8.3.2 Volume Wedge

A wedge is a triangular prism as shown in the diagram. Here the blue line extends along the positive
z-axis and the red line extends along the x-axis.

Property Type Description

Dimensions
Hep3
Vector

1. Width of the prism in x

2. Open end height of the prism in y

3. Length of the prism in z

8.3.3 Volume Polycone

A polycone is a volume of rotation, de�ned by a number of points in r and z. The volume is found by a
linear interpolation of the points.

Property Type Description

PolyconeType string
Set to Fill to de�ne a solid volume of rotation. Set to Cone to
de�ne a shell volume of rotation with an inner and outer surface.

FieldMapMode string The name of the �le that contains the polycone data.

8.3.4 Volume Quadrupole

Quadrupoles are de�ned by an empty cylinder with four further cylinders that are approximations to
pole tips.

Property Type Description
PhysicalLength double The length of the quadrupole container.
QuadRadius double The distance from the quad centre to the outside of the quad.
PoleTipRadius double The distance from the quad centre to the pole tip.
CoilRadius double
CoilHalfWidth double
BeamlineMaterial string The material from which the beamline volume is made.
QuadMaterial string The material from which the quadrupole volume is made.

49

8.3.5 Volume Multipole

Multipoles are de�ned by an empty box with an arbitrary number of cylinders that are approximations
to pole tips. Poles are placed around the centre of the box with n-fold symmetry. Multipoles can be
curved, in which case poles cannot be de�ned � only a curved rectangular aperture will be present.

Property Type Description

ApertureCurvature double
Radius of curvature of the multipole aperture. For now curved
apertures cannot have poles. Set to 0 for a straight aperture.

ApertureLength double Length of the multipole aperture.
NumberOfPoles int Number of poles.

PoleCentreRadius double
The distance from the centre of the aperture to the centre of
the cylindrical pole.

PoleTipRadius double
The distance from the centre of the aperture to the tip of the
cylindrical pole.

ApertureInnerHeight double The inner full height of the aperture.
ApertureInnerWidth double The inner full width of the aperture.
AppertureOuterHeight double The outer full height of the aperture.
ApertureOuterWidth double The outer full width of the aperture.

8.3.6 Volume Boolean

Boolean volumes enable several volumes to be combined to make very sophisticated shapes from a number
of elements. Elements can be combined either by union, intersection or subtraction operations. A union
creates a volume that is the sum of two elements; an intersection creates a volume that covers the region
where two volumes intersect each other; and a subtraction creates a volume that contains all of one
volume except the region that another volume sits in.

Boolean volumes combine volumes modelled by other MiceModules (submodules), controlled using
the properties listed below. Only the volume shape is used; position, rotation and �eld models etc are
ignored. Materials, colours and other relevant properties are all taken only from the Boolean Volume's
properties.

Note that unlike in other parts of MAUS, submodules for use in Booleans (BaseModule, Boolean-
Module1, BooleanModule2 ...) must be de�ned in a separate �le, either de�ned in $MICEFILES/Mod-
els/Modules or in the working directory.

Also note that visualisation of boolean volumes is rather unreliable. Unfortunately this is a feature
of GEANT4. An alternative technique is to use special virtual detectors to examine hits in boolean
volumes.

Property Type Description

BaseModule string

Name of the physical volume that the BooleanVolume is based
on. This volume will be placed at (0,0,0) with no rotation, and
all subsequent volumes will be added, subtracted or intersected
with this one.

BooleanModule1 string
The �rst module to add. MAUS will search for
the MiceModule with path $MICEFILES/Models/Mod-
ules/<BooleanModule1>.

BooleanModule1Type string
The type of boolean operation to apply, either �Union�, �Inter-
section� or �Subtraction�.

BooleanModule1Pos
Hep3
Vector

The position of the new volume with respect to the Base vol-
ume.

BooleanModule1Rot
Hep3
Vector

The rotation of the new volume with respect to the Base vol-
ume.

BooleanModuleN string

Add extra modules as required. Replace �N� with the module
number. N must be a continuous series incrementing by 1 for
each new module. Note that the order in which modules are
added is important � (A-B) U C is di�erent to A-(B U C).

50

Property Type Description
BooleanModuleNType string

BooleanModuleNPos
Hep3
Vector

BooleanModuleNRot
Hep3
Vector

8.3.7 Volume Sphere

A sphere is a spherical shell, with options for opening angles to make segments.

Property Type Description

Dimensions
Hep3
Vector

The x value de�nes the inner radius. The y value de�nes the
outer radius of the shell. The z value is not used.

Phi
Hep3
Vector

The x value de�nes the start opening angle in phi. The y value
de�nes the end opening angle. The z value is not used. Phi
values must be in the range 0 to 360 degrees. If unde�ned,
defaults to the range 0-360 degrees.

Theta
Hep3
Vector

The x value de�nes the start opening angle in theta. The
y value de�nes the end opening angle. The z value is not
used. Theta values must be in the range 0 to 180 degrees. If
unde�ned, defaults to the range 0-360 degrees.

8.4 Repeating Modules

It is possible to set up a repeating structure for e.g. a repeating magnet lattice. The RepeatModule
property enables the user to specify that a particular module will be repeated a number of times, with
all properties passed onto the child module, but with a new position, orientation and scale factor. Each
successive repetition will be given a translation and a rotation relative to the coordinate system of the
previous repetition, enabling the construction of circular and straight accelerator lattices. Addition-
ally, successive repetitions can have �elds scaled relative to previous repetitions, enabling for example
alternating lattices.

Property Type Description
RepeatModule bool Set to 1 to enable repeats in this module.

NumberOfRepeats int
Number of times the module will be repeated in addition to
the initial placement.

RepeatTranslation
Hep3
Vector

Translation applied to successive repeats, applied in the coor-
dinate system of the previous repetition.

RepeatRotation
Hep3
Vector

Rotation applied to successive repeats, applied in the coordi-
nate system of the previous repetition.

RepeatScaleFactor double
ScaleFactor applied to successive repeats, applied relative to
previous repetition's scale factor.

The RepeatModule2 property also enables the user to specify that a particular module will be repeated
a number of times. In this case, MAUS will set a substitution variable @RepeatNumber that holds an
index between 0 and NumberOfRepeats. This can be used in an expression in to provide a versatile
interface between user and accelerator lattice.

Property Type Description
RepeatModule2 bool Set to 1 to enable repeats in this module.

NumberOfRepeats int
Number of times the module will be repeated in addition to
the initial placement.

8.5 Beam De�nition and Beam Envelopes

The Optics application can be used to track a trajectory and associated beam envelope through the
accelerator structure. Optics works by �nding the Jacobian around some arbitrary trajectory using a

51

numerical di�erentiation. This is used to de�ne a linear mapping about this trajectory, which can then
be used to transport the beam envelope.

A beam envelope is de�ned by a reference trajectory and a beam ellipse. The reference trajectory
takes its position and direction from the position and rotation of the module. If no rotation is de�ned
the reference trajectory is taken along the z-axis. The magnitude of the momentum and the initial time
of the reference trajectory is de�ned by properties. RF cavities are phased using the reference trajectory
de�ned here.

The beam ellipse is represented by a matrix, which can either be set using

• Twiss-style parameters in (x, px), (y, py) and (t, E) spaces.

• Twiss-style parameters in (t, E) space and Penn-style parameters in a cylindrically symmetric
(x, px, y, py) space.

• A 6x6 beam ellipse matrix where the ellipse equation is given by X.T()MX = 1.

The Penn ellipse matrix is given by

M =



εLmc
βL

p −εLmcαL 0 0 0 0

εLmcγLp
Dx

E V (E) D′x
E V (E) Dy

E V (E) D′y
E V (E)

εTmc
βT

p −εTmcαT 0 −εTmc(q2βT
Bz

P − L)
εTmcγT p εTmc(q2βT

Bz

P − L) 0
εTmc

βT

p −εTmcαT
εLmcγT p


Here L is a normalised canonical angular momentum, q is the reference particle charge, Bz is the nominal
on-axis magnetic �eld, p is the reference momentum, m is the reference mass, εT is the transverse
emittance, βT and αT are the transverse Twiss-like functions, εL is the longitudinal emittance and βL
and αL are the longitudinal Twiss-like functions. Additionally Dx, Dy, D

′
x and D′y are the dispersions

and their derivatives with respect to z and V (E) is the variance of energy (given by the (2, 2) term in
the matrix above).

The Twiss ellipse matrix is given by

M =



εLmc
βL

p −εLmcαL 0 0 0 0

εLmcγLp
Dx

E V (E) D′x
E V (E) Dy

E V (E) D′y
E V (E)

εxmc
βx

p −εxmcαx 0 0
εxmcγxp 0 0

εymc
βy

p −εymcαy
εymcγyp


Here p is the reference momentum, m is the reference mass, ei, bi and ai are the emittances and Twiss
functions in the (t,E), (x,px) and (y,py) planes respectively, Dx, Dy, D'x, D'y are the dispersions and
their derivatives with respect to z and V(E) is the variance of energy (given by the (2,2) term in the
matrix above).

Property Type Description

EnvelopeType string
Set to TrackingDerivative to evolve a beam envelope in the
Optics application.

BeamType string

Set to Random to generate a beam using the parameters below
for the Simulation application. Set to Pencil to generate a
pencil beam (with no random distribution). Set to ICOOL,
Turtle, MAUS_PrimaryGenHit or G4BeamLine to use a beam
�le.

52

Property Type Description
Pid int The particle ID of particles in the envelope or beam.
Time double Set the time of the envelope reference trajectory

Longitudinal Variable string
Set the longitudinal variable used to de�ne the reference tra-
jectory momentum. Options are Energy, KineticEnergy, Mo-
mentum and ZMomentum.

Energy

KineticEnergy

Momentum

ZMomentum

double

double

double

double

De�ne the value of the longitudinal variable used to calcu-
late the mean momentum and energy. The usual relationship
E2+p2c2=m2c4 applies. Kinetic energy Ek is related to energy
E by Ek+m=E.

EllipseDe�nition string
De�ne the beam ellipse that will be used in calculating the evo-
lution of the Envelope, or used to generate a beam for Beam-
Type Random. Options are Twiss, Penn and Matrix.

The following properties are only used if EllipseDe�nition is set to Twiss

Emittance_X double

Emittance_Y double

Emittance_L double

Emittance in each 2d subspace, (x,px), (y,py) and (t,E).

Beta_X double

Beta_Y double

Beta_L double

Twiss b function in each 2d subspace, (x,px), (y,py) and (t,E).

Alpha_X double

Alpha_Y double

Alpha_L double

Twiss a function in each 2d subspace, (x,px), (y,py) and (t,E).

The following properties are only used if EllipseDe�nition is set to Matrix

Covariance(t,t) double

Covariance(t,E) double

Covariance(t,x) double

... double

Covariance(Py,Py) double

Set the 6x6 matrix that will be used in the to de�ne the beam
ellipse. Covariances should be covariances of elements of the
matrix (x,Px,y,Py,t,E).
This must be a positive de�nite matrix, i.e. determinant > 0.
Note that this means that at least the 6 terms on the diagonal
must be de�ned. Other terms default to 0.

The following properties are only used if EllipseDe�nition is set to Penn

Emittance_T double Transverse emittance for the 4d (x,px,y,py) subspace.
Emittance_L double Longitudinal emittance for the 2d (t,E) subspace.
Beta_T double Transverse beta for the 4d (x,px,y,py) subspace.
Beta_L double Longitudinal beta for the 2d (t,E) subspace.
Alpha_T double Transverse alpha for the 4d (x,px,y,py) subspace.
Alpha_L double Longitudinal alpha for the 2d (t,E) subspace.
Normalised
AngularMomentu

double Normalised angular momentum for the transverse phase space.

Bz double Nominal magnetic �eld on the reference particle.
The following properties are used if EllipseDe�nition is set to Penn or Twiss

Dispersion_X double Dispersion in x (x-energy correlation).
Dispersion_Y double Dispersion in y (y-energy correlation).
DispersionPrime_X double D' in x (Px-energy correlation).
DispersionPrime_Y double D' in y (Py-energy correlation).
The following properties are only relevant for generating a beam envelope

RootOutput string
Output �le name for writing output beam envelope in ROOT
binary format.

LongTextOutput string
Output �le name for writing output beam envelope in string
format.

ShortTextOutput string
Output �le name for writing output beam envelope in string
format. This abbreviated output omits some of the �elds that
are present in LongTextOutput �les.

53

Property Type Description

BeamOutput string
If a BeamType is de�ned, this property controls the �le name
to which beam data is written.

Delta_t double
O�set in time used for calculating numerical derivatives. De-
fault is 0.1 ns.

Delta_E double
O�set in energy used for calculating numerical derivatives. De-
fault is 1 MeV.

Delta_x double
O�set in x position used for calculating numerical derivatives.
Default is 1 mm.

Delta_Px double
O�set in x momentum used for calculating numerical deriva-
tives. Default is 1 MeV/c.

Delta_y double
O�set in y position used for calculating numerical derivatives.
Default is 1 mm.

Delta_Py double
O�set in y momentum used for calculating numerical deriva-
tives. Default is 1 MeV/c.

Max_Delta_t double

Max_Delta_E double

Max_Delta_x double

Max_Delta_Px double

Max_Delta_y double

Max_Delta_Py double

Maximum o�sets when poly�t algorithm is used. In some cases
the o�set can keep increasing without limit unless these max-
imum o�sets are de�ned. Default is no limit.

The following properties are only relevant for generating a particle beam

UseAsReference Bool

If set to true and the datacard FirstParticleIsReference is set
to 0, the �rst event in the Module will be used as the reference
particle that sets cavity phases. This particle will then have
the mean trajectory (i.e. no gaussian distribution).

BeamFile string
If the BeamType is ICOOL, Turtle, MAUS_PrimaryGenHit
or G4BeamLine, this property de�nes the name of the �le con-
taining tracks for MAUS.

NumberOfEvents int

Set the maximum number of events to take from this module.
If other modules are de�ned, MAUS will iterate over the mod-
ules until it the datacard numEvts is reached or all modules
have been run to NumberOfEvents. Default is for MAUS to
keep tracking from the �rst module it �nds until numEvts is
reached.

8.6 Optimiser

It is possible to de�ne an optimiser for use in the Optics application. The optimiser enables the user
to vary parameters in the MiceModule �le and try to �nd some optimum setting. For each value of the
parameters, MAUS Optics will calculate a score; the optimiser attempts to �nd a minimum value for
this score.

Property Type Description

Optimiser string
Controls the function used for optimising. For now Minuit is
the only available option.

Algorithm string

For Minuit optimiser, controls the Minuit algorithm used. In
general Simplex is a good option to use here. An alterna-
tive is Migrad. See Minuit documentation (for example at
http://root.cern.ch/root/html/TMinuit.html) for further in-
formation. Minuit attempts to minimise the score function
de�ned by the Score properties.

54

Property Type Description

NumberOfTries int
Maximum number of iterations MAUS will make in order to
�nd the optimum value.

StartError double Guess at the initial error in the score.

EndError double
Required �nal error in the score for the optimisation to con-
verge successfully.

RebuildSimulation bool

Set to False to tell MAUS not to rebuild the simulation on
each iteration. This should be used to speed up the optimiser
when a parameter is used that does not change the �eld maps.
Default is true.

Parameter1_Start double Seed value for the parameter, that is used in the �rst iteration.

Parameter1_Name string

Name of the parameter. This name is used as an expression
substitution variable elsewhere in the code and should start
with @. See Expression Substitutions above for details on us-
age of expression substitutions.

Parameter1_Delta double Estimated initial error on the parameter. Default is 1.

Parameter1_Fixed bool
Set to true to �x the parameter (so that it is excluded from
the optimisation). Default is false.

Parameter1_Min double
If required, set to the minimum value that the parameter can
hold.

Parameter1_Max double
If required, set to the maximum value that the parameter can
hold.

Parameter2_Start ...

... ...

Parameter2_Max ...

Score1 double

Score2 ...

... ...

De�ne an arbitrary number of parameters. Parameters must
be numbered consecutively, and each parameter must have at
least the start value and name de�ned. The optimiser will
attempt to optimise against a score that is calculated by sum-
ming the Score1, Score2,... parameters on each iteration.

55

Figure 8.1: Schematic of the geometry of a Wedge volume.

56

Chapter 9

Field Properties

Invoke a �eld using PropertyString FieldType <�eldtype>. The �eld will be placed, normally centred
on the MiceModule Position and with the appropriate Rotation. Further options for each �eld type are
speci�ed below, and relevant datacards are also given. If a �eldtype is speci�ed some other properties
must also be speci�ed, while others may be optional, usually taking their value from defaults speci�ed in
the datacards. Only one �eldtype can be speci�ed per module. However, �elds from multiple modules are
superimposed, each transformed according to the MiceModule speci�cation. This enables many di�erent
�eld con�gurations to be simulated using MAUS.

To use BeamTools �elds, datacard FieldMode Full must be set. This is the default.

Property Type Description
FieldType string Set the �eld type of the MiceModule.

9.0.1 FieldType CylindricalField

Sets a constant magnetic �eld in a cylindrical region symmetric about the z-axis of the module.

Property Type Description

ConstantField
Hep3
Vector

The magnetic �eld that will be placed in the region.

Length double

FieldRadius double
The physical extent of the region.

9.0.2 FieldType RectangularField

Sets a constant magnetic �eld in a rectangular region.

Property Type Description

ConstantField
Hep3
Vector

The magnetic �eld that will be placed in the region.

Length double

Width double

Height double

The physical extent of the region.

9.0.3 FieldType Solenoid

MAUS simulates solenoids using a series of current sheets. The �eld for each solenoid is written to a
�eld map on a rectangular grid and can then be reused. The �eld from each current sheet is calculated
using the formula for current sheets detailed in MUCOOL Note 281, Modeling solenoids using coil, sheet
and block conductors.

57

Property Type Description

FileName string
Read or write solenoid data to the �lename. If di�erent modules
have the same �lename, MAUS assumes they are the same.

FieldMapMode string

If set to Read, MAUS will attempt to read existing data from the
FileName. If set to Write, MAUS will generate new data and write
it to the FileName. If set to Analytic, MAUS will calculate �elds
directly without interpolating. If set to WriteDynamic acts as in
Write except the grid extent and grid spacing at each point is cho-
sen dynamically to some tolerance de�ned in the FieldTolerance
property. Takes default from datacard SolDataFiles (Write).

Length double

Thickness double

InnerRadius double

Coil physical parameters. Only used in Write/Analytic mode
where they are mandatory.

CurrentDensity double The current density of the solenoid, in A/mm2.

Current double

The current in the solenoid coil; the CurrentDensity is calculated
from current I, number of turns n, length l and thickness t using
J = nI/(lt). If CurrentDensity is also de�ned, it overrides any
Current setting.

NumberOfTurns int
The total number of turns in the coil (see Current for more infor-
mation).

ZExtentFactor double
Field map extends to length + ZExtentFactor*innerRadius in
Write mode. Takes default from datacard SolzMapExtendFactor
(10.). Map size is chosen dynamically in WriteDynamic mode.

RExtentFactor double
Field map extends to radius RExtentFactor*innerRadius in
Write mode. Takes default from datacard SolrMapExtendFactor
(2.018...). Avoid allowing grid nodes to fall on sheets.

NumberOfZCoords int
Number of coordinates in z in �eld map grid in Write mode. Takes
default from datacard NumberNodesZGrid (500).

NumberOfRCoords int
Number of coordintes in r in �eld map grid in Write mode. Takes
default from datacard NumberNodesRGrid (100).

NumberOfSheets int
Number of sheets used to calculate the �eld. Takes default from
datacard DefaultNumberOfSheets (10).

FieldTolerance double

Mandatory when FieldMapMode is WriteDynamic. If �eld map
mode is write dynamic, this datacard controls the tolerance on
errors in the �eld with which the �eld grid and the grid extent
will be chosen.

Interpolation
Algorithm

string
Choose the interpolation algorithm. Options are BiLinear for a
linear interpolation in r and z, or LinearCubic for a linear inter-
polation in r and a cubic spline in z. Default is LinearCubic.

IsAmalgamated bool
Set to 1 to add the coil to CoilAmalgamtion parent �eld (see
below).

9.0.4 FieldType FieldAmalgamation

During tracking, MAUS stores a list of �elds and for each one MAUS checks to see if tracking is performed
through a particular �eld map's bounding box. This can be slow if a large number of �elds are present.
One way to speed this up is to store contributions from many coils in a single CoilAmalgamation. A
CoilAmalgamation searches through child modules for solenoids with PropertyBool IsAmalgamated set
to true. If it �nds such a coil, it will add the �eld generated by the solenoid to its own �eld map and
disable the coil.

Property Type Description
Length double The Length of the �eld map generated by the CoilAmalgamation.

RMax double
The maximum radius of the �eld map generated by the CoilA-
malgamation.

Interpolation
Algorithm

string
Choose the interpolation algorithm. Options are BiLinear for a
linear interpolation in r and z, or LinearCubic for a linear inter-
polation in r and a cubic spline in z. Default is LinearCubic.

58

Property Type Description

ZStep double

RStep double
Step size of the �eld map generated by the CoilAmalgamation.

9.0.5 FieldType DerivativesSolenoid

This is an alternative �eld model for solenoids that uses a power law expansion of the on-axis magnetic
�eld and its derivatives, and an exponential fall-o� for the fringe �eld. The fringe �eld is de�ned in the
same way as other end �elds, but note that HardEdged end �eld type is not available for solenoids and
will result in an error.

Property Type Description
PeakField double Nominal peak �eld of the solenoid.

ZMax double
Maximum z-half length of the solenoid bounding box in the local
coordinate system of the magnet.

RMax double
Maximum radius of the solenoid bounding box in the local coor-
dinate system of the magnet.

MaxEndPole int
Maximum derivative used in calculating the end �eld of the
solenoid.

9.0.6 Phasing Models

MAUS has a number of models for phasing RF cavities.
When CavityMode is Unphased, MAUS attempts to phase the cavity itself. When using CavityMode

Unphased MAUS needs to know when particles enter, cross the middle, and leave cavities. To phase a
cavity, MAUS builds a virtual detector in the centre of the cavity that is used for phasing and then �res
a reference particle through the system. Stochastic processes are always disabled during this process,
while mean energy loss can be disabled using the datacard ReferenceEnergyLossModel. If a reference
particle crosses a plane through the centre of a cavity, it sets the phase of the cavity to the time at which
the particle crosses.

The �eld of the cavity during phasing is controlled by the property FieldDuringPhasing. There are
four modes:

• None: Cavity �elds are disabled during phasing

• Electrostatic: An electrostatic �eld with no positional dependence given by
PeakEField*sin(ReferenceParticlePhase) is enabled during phasing.

• TimeVarying : A standard time varying �eld is applied during phasing, initially with arbitrary phase
relative to the reference particle. MAUS uses a Newton-Raphson method to �nd the appropriate
reference phase iteratively, with tolerance set by the datacard PhaseTolerance.

• EnergyGainOptimised : A standard time varying �eld is applied during phasing, initially with
arbitrary phase and peak �eld relative to the reference particle. MAUS uses a 2D Newton-Raphson
method to �nd the appropriate reference phase and peak �eld iteratively, so that the reference
particle crosses the cavity centre with phase given by property ReferenceParticlePhase and gains
energy over the whole cavity given by property EnergyGain with tolerances set by the datacards
PhaseTolerance and RFDeltaEnergyTolerance.

9.0.7 Tracking Stability Around RF Cavities

Usually RF cavities have little or no fringe �eld, and this can lead to some instability in the tracking
algorithms. When MAUS makes a step into an RF cavity volume, the tracking algorithms tend to smooth
out a �eld in a non-physical way. This can be prevented by either (i) making the step size rather small
in the RF cavity or (ii) forcing MAUS to stop tracking by adding a physical volume at the entrance of
the RF cavity (a window, typically made of vacuum). Doing this should improve stability of tracking.

59

9.0.8 FieldType PillBox

Sets a PillBox �eld in a particular region. MAUS represents pillboxes using a sinusoidally varying TM010
pill box �eld, with non-zero �eld vector elements given by

Bφ = J1(krr) cos(ωt)
Ez = J0(krr) cos(ωt)

Here Jn are Bessel functions and kr is a constant. See, for example, SY Lee VI.1. All other �elds are 0.

Property Type Description
Length double Length of the region in which the �eld is present.

CavityMode string
Phasing mode of the cavity - options are Phased, Unphased and
Electrostatic.

FieldDuringPhasing string
Controls the �eld during cavity phasing � options are None, Elec-
trostatic, TimeVarying and EnergyGainOptimised.

EnergyGain double
WhenFieldDuringPhasing is set to EnergyGainOptimised, con-
trols the peak electric �eld.

Frequency double The cavity frequency.

PeakEField double
The peak �eld of the cavity. Not used when the FieldDuringPhas-
ing is EnergyGainOptimised.

TimeDelay double In Phased mode the time delay (absolute time) of the cavity.
PhasingVolume string Set to SpecialVirtual to make the central volume a special virtual.

ReferenceParticle
Energy

double

ReferenceParticle
Charge

double

In Electrostatic mode, MAUS calculates the peak �eld and the
�eld the reference particle sees using a combination of the refer-
ence particle energy, charge and phase. Take defaults from datac-
ards NominalKineticEnergy and MuonCharge

ReferenceParticle
Phase

double

MAUS tries to phase the �eld so that the reference particle crosses
the cavity at ReferenceParticlePhase (units are angular). 0o cor-
responds to no energy gain, 90o corresponds to operation on-crest.
Default from datacard rfAcclerationPhase.

9.0.9 FieldType RFFieldMap

Sets a cavity with an RF �eld map in a particular region. RFFieldMap uses the same phasing algorithm
as described above.

Property Type Description
Length double Length of the region in which the �eld is present.

CavityMode string
Phasing mode of the cavity - options are Phased and Unphased.
RFFieldMaps cannot operated in Electrostatic mode.

FieldDuringPhasing string
Controls the �eld during cavity phasing � options are None, Elec-
trostatic, TimeVarying and EnergyGainOptimised.

EnergyGain double
WhenFieldDuringPhasing is set to EnergyGainOptimised, con-
trols the peak electric �eld.

Frequency double The cavity frequency.

PeakEField double
The peak �eld of the cavity. Not used when the FieldDuringPhas-
ing is EnergyGainOptimised.

TimeDelay double In Phased mode the time delay (absolute time) of the cavity.
PhasingVolume string Set to SpecialVirtual to make the central volume a special virtual.

ReferenceParticle
Energy

double

ReferenceParticle
Charge

double

In Electrostatic mode, MAUS calculates the peak. �eld and the
�eld the reference particle sees using a combination of the refer-
ence particle energy, charge and phase. Take defaults from datac-
ards NominalKineticEnergy and MuonCharge

60

Property Type Description

ReferenceParticle
Phase

double

MAUS tries to phase the �eld so that the reference particle crosses
the cavity at ReferenceParticlePhase (units are angular). 0o cor-
responds to no energy gain, 90o corresponds to operation on-crest.
Default from datacard rfAcclerationPhase.

FileName string The �le name of the �eld map �le.

FileType string
The �le type of the �eld map. Only supported option is Super-
FishSF7.

9.0.10 FieldType Multipole

Creates a multipole of arbitrary order. Fields are generated using either a hard edged model, with no
fringe �elds at all; or an Enge model similar to ZGoubi and COSY. In the former case �elds are calculated
using a simple polynomial expansion. In the latter case �elds are calculated using the polynomial
expansion with an additional exponential drop o�. Fields can be superimposed onto a bent coordinate
system to generate a sector multipole with arbitrary �xed radius of curvature.

Unlike most other �eld models in MAUS, the zero position corresponds to the center of the entrance
of the multipole; and the multipole extends in the +z direction.

The method to de�ne end �elds is described in the section EndFieldTypes below

Property Type Description

Pole int
The reference pole of the magnet. 1=dipole, 2=quadrupole,
3=sextupole etc.

FieldStrength double

Scale the �eld strength in the good �eld region. For dipoles, this
sets the dipole �eld; for quadrupoles this sets the �eld gradient.
Note that for some end �eld settings there can be no good �eld
region (e.g. if the end length is >� centre length).

Height double Height of the �eld region.
Width double Width or delta radius of the �eld region.
Length double Length of the �eld along the bent trajectory.

EndFieldType string
Set to HardEdged to disable fringe �elds. Set to Enge or Tanh to
use those models, as described elsewhere. Default is HardEdged.

CurvatureModel string

Choose the model for curvature. Straight forces no curvature.
Constant gives a constant radius of curvature; StraightEnds gives
a constant radius of curvature along the length of the multipole
with straight end �elds beyond this length. MomentumBased
gives radius of curvature determined by a momentum and a total
bending angle.

ReferenceCurvature double
Radius of curvature of the magnet in Constant or StraightEnds
mode. Set to 0 for a straight magnet. Default is 0.

ReferenceMomentum double
Reference momentum used to calculate the radius of curvature of
a dipole in MomentumBased mode. Default is 0.

BendingAngle double
The angle used to calculate the radius of curvature of a dipole in
MomentumBased mode. Note that this is mandatory in Momen-
tumBased mode.

9.0.11 FieldType CombinedFunction

This creates superimposed dipole, quadrupole and sextupole �elds with a common radius of curvature.
The �eld is intended to mimic the �rst few terms in a multipole expansion of a �eld like

B(y = 0) = B0

(
r

r0

)k
The �eld index is a user de�ned parameter, while the dipole �eld and radius of curvature can either be
de�ned directly by the user or de�ned in terms of a reference momentum and total bending angle. Fields
are calculated as in the multipole �eld type de�ned above.

61

Property Type Description

Pole int
The reference pole of the magnet. 1=dipole, 2=quadrupole,
3=sextupole etc.

BendingField double

The nominal dipole �eld B0. Note that this is mandatory in all
cases except where CurvatureModel is MomentumBased, when
the BendingAngle and ReferenceMomentum is used to calculate
the dipole �eld instead.

FieldIndex double The �eld index k.
Height double Height of the �eld region.
Width double Width or delta radius of the �eld region.
Length double Length of the �eld along the bent trajectory.

EndFieldType string
Set to HardEdged to disable fringe �elds. Set to Enge or Tanh to
use those models, as described elsewhere. Default is HardEdged.

CurvatureModel string

Choose the model for curvature. Straight forces no curvature.
Constant gives a constant radius of curvature; StraightEnds gives
a constant radius of curvature along the length of the multipole
with straight end �elds beyond this length. MomentumBased
gives radius of curvature determined by a momentum and a total
bending angle.

ReferenceCurvature double
Radius of curvature of the magnet in Constant or StraightEnds
mode. Set to 0 for a straight magnet. Default is 0.

ReferenceMomentum double
Reference momentum used to calculate the radius of curvature of
a dipole in MomentumBased mode. Default is 0.

BendingAngle double
The angle used to calculate the radius of curvature of a dipole in
MomentumBased mode. Note that this is mandatory in Momen-
tumBased mode.

9.0.12 EndFieldTypes

In the absence of current sources, the magnetic �eld can be calculated from a scalar potential using the
standard relation

~B = ∇Vn
The scalar magnetic potential of the nth-order multipole �eld is given by

Vn =
qm∑
q=0

n∑
m=0

n!2
G(2q)(s)(r2 + y2)q sin(mπ2)rn−mym

4qq!(n+ q)!m!(n−m)!

where G(s) is either the double Enge function,

G(s) = E[(x− x0)/λ] + E[(−x− x0)/λ]− 1

E(s) =
B0

Rn0

1
1 + exp(C1 + C2s+ C3s2 + ...)

or G(s) is the double tanh function,

G(s) = tanh[(x+ x0)/λ]/2 + tanh[(x− x0)/λ]/2

and (r, y, s) is the position vector in the rotating coordinate system. Note that here s is the distance
from the nominal end of the �eld map.

Property Type Description

EndFieldType string
Set to HardEdged to disable fringe �elds. Set to Enge or Tanh to
use those models, as described elsewhere. Default is HardEdged.

The following properties are used for EndFieldType Tanh

EndLength double Set the l parameter that de�nes the rapidity of the �eld fall o�.
CentreLength double Set the x0 parameter that de�nes the length of the �at �eld region.

MaxEndPole int
Set the maximum pole that will be calculated � should be larger
than the multipole pole.

62

Property Type Description
The following properties are used for EndFieldType Enge

EndLength double Set the l parameter that de�nes the rapidity of the �eld fall o�.
CentreLength double Set the x0 parameter that de�nes the length of the �at �eld region.

MaxEndPole int
Set the maximum pole that will be calculated � should be larger
than the multipole pole.

Enge1 double

Enge2 double

... double

EngeN double

Set the parameters Ci as de�ned in the Enge function above.

9.0.13 FieldType MagneticFieldMap

Reads or writes a magnetic �eld map in a particular region. Two sorts of �eld maps are supported; either
a 2d �eld map, in which cylindrical symmetry is assumed, or a 3d �eld map.

For 2d �eld maps, MAUS reads or writes a �le that contains information about the radial and longi-
tudinal �eld components. This is intended for solenoidal �eld maps where only radial and longitudinal
�eld components are present. Note that in write mode, MAUS assumes cylindrical symmetry of the
�elds. In this case, MAUS writes the x and z components of the magnetic �eld at points on a grid in x
and z. Fields with an electric component are excluded from this summation.

For 3d �eld maps, MAUS reads a �le that contains the position and �eld in cartesian coordinates
and performs a linear interpolation. This requires quite large �eld map �les; the �le size can be slightly
reduced by using certain symmetries, as described below. It is currently not possible to write 3d �eld
maps.

Property Type Description
FieldMapMode string Set to Read to read a �eld map; and Write to write a �eld map.
FileName string The �le name that is used for reading or writing.

FileType string
The �le format. Supported options in Read mode are MAUStext,
MAUSbinary, g4beamline, icool, g4bl3dGrid. Only MAUStext is
supported in Write mode. Default is MAUStext.

Symmetry string

Symmetry option for g4bl3dGrid �le type. Options are None,
Dipole or Quadrupole. None uses the �eld map as is, while Dipole
and Quadrupole re�ect the octant between the positive x, y and
z axes to give an appropriate �eld for a dipole or quadrupole.

ZStep double

RStep double

Step size in z and r. Mandatory in Write mode but not used in
Read mode (where step size comes from the map �le).

ZMin double

ZMax double

RMin double

RMax double

Upper and lower bounds in z and r. Mandatory in Write mode
but not used in Read mode (where boundaries come from the map
�le).

Some �le formats are described below. I am working towards making the �le format more generic and
hence possibly easier to use, but backwards compatibility will hopefully be maintained.

MAUStext Field Map Format

The native �eld map format used by MAUS in text mode is described below.
GridType = Uniform N = number_rows

Z1 = z_start Z2 = z_end dZ = z_step

R1 = r_start R2 = r_end dR = r_step

Bz_Values Br_Values

... ...

<Repeat as necessary>

In this mode, �eld maps are represented by �eld values on a regular 2d grid that is assumed to have
solenoidal symmetry, i.e. cylindrical symmetry with no tangential component.

63

Name Type Description
number_rows double Number of rows in the �eld map �le.
z_start double Position of the grid start along the z axis.
z_end double Position of the grid end along the z axis.
z_step double Step size in z.
r_start double Position of the grid start along the r axis.
r_end double Position of the grid end along the r axis.
r_step double Step size in r.
Bz_Values double Bz �eld value.
Br_Values double Br �eld value.

g4bl3dGrid Field Map Format

The �le format for 3d �eld maps is a slightly massaged version of a �le format used by another code,
g4beamline. In this mode, �eld maps are represented by �eld values on a regular cartesian 3d grid.

number_x_points number_y_points number_z_points global_scale

1 X [x_scale]

2 Y [y_scale]

3 Z [z_scale]

4 BX [bx_scale]

5 BY [by_scale]

6 BZ [bz_scale]

0

X_Values Y_Values Z_Values Bx_values By_values Bz_values

...

<Repeat as necessary>

where text in bold indicates a value described in the following table

Name Type Description
number_x_points double Number of points along x axis.
number_y_points double Number of points along y axis.
number_z_points double Number of points along z axis.
global_scale double Global scale factor applied to all x, y, z and Bx, By, Bz values.
x_scale double Scale factor applied to all x values.
y_scale double Scale factor applied to all y values.
z_scale double Scale factor applied to all z values.
bx_scale double Scale factor applied to all Bx values.
by_scale double Scale factor applied to all By values.
bz_scale double Scale factor applied to all Bz values.
X_Values double List (column) of each x value.
Y_Values double List (column) of each y value.
Z_Values double List (column) of each z value.
Bx_Values double List (column) of each Bx value.
By_Values double List (column) of each By value.
Bz_Values double List (column) of each Bz value.

64

Chapter 10

TOF Detector

This chapter describes the time-of-�ight (TOF) simulation and reconstruction software. The simulation
is designed to produce digits similar to �real data� and the reconstruction is agnostic about whether the
digits are from simulation or data acquisition.

10.1 Simulation

• Geometry
For the most upstream TOF � TOF0 � to be simulated, it is essential that the z where the beam
starts be upstream of the detector.

In the standard Step VI geometry as described in Stage6.dat, this is at -14200 mm and for the
Step IV geometry described in Stage4.dat it is at 2773 mm

The internal geometry of the TOF detector and the positioning of the slabs are de�ned in the
MiceModules represenation . The numbering convention is the same as that for the DAQ and is
described in MICE-Notes 251 and 286. It is worth keeping in mind the plane numbering convention
since the current naming scheme is suboptimal:

◦ station refers to the TOF station � TOF0, TOF1, TOF2

◦ plane refers to the horizontal/vertical planes within a station

◦ plane 0 means horizontal slabs � slabs are oriented horizontally. They measure y

◦ plane 1 means vertical slabs � slabs are oriented vertically. They measure x

The z locations of TOF0 and TOF1 are speci�ed in the Beamline.dat �le and the z of TOF2 is
speci�ed in the main geometry description �le, for e.g. Stage6.dat

• Hits
GEANT hits are generated for all tracks which pass through a TOF slab. �True� TOF hits are
described by the MAUS::Hit class and contain the GEANT4 information prior to digitization. The
members of the class are listed below.

10.1.1 Digitization

Each GEANT hit in the TOF is associated with a slab based on the geometry described in the TOF
MiceModules. If a hit's position does not correspond to a physical slab (for instance if the hit is outside
the �ducial volume) the hit is not digitized. The energy deposited in the slab and the hit time are then
digitized as described below.

• Charge digitization The energy deposited by a hit in a slab is �rst converted to units of pho-
toelectrons. The photoelectron yield from a hit is attenuated by the distance from the hit to the
PMT, then smeared by the photoelectron resolution. The yields from all hits in a given slab are
then added and the summed photoelectron yield is converted to ADC (In principle, this should be
done not on an event-by-event basis but rather on a trigger-basis. In the absence of a real trigger,
all hits in a slab are now merged)

65

Table 10.1: True TOF hit class members.
The GEANT TOF hits are encoded with the following information.

Name Meaning
channel_id Class TOFChannelId* contains station,plane,slab
energy_deposited double � energy deposited by track in the slab
position ThreeVector � x, y, z of hit at the slab
momentum ThreeVector � px, py, pz of particle at slab
time double � hit time
charge double � PDG charge of particle that produced this hit
track_id G4Track � ID of the GEANT track that produced this hit
particle_id ThreeVector � PDG code of the particle that produced this hit

Table 10.2: Data cards for TOF digitization.
Name Meaning Default
TOFconversionFactor conversion 0.005 MeV

TOFpmtTimeResolution resolution for smearing the PMT
time

0.1 ns

TOFattenuationLength light attenuation in slabs 1400 mm

TOFadcConversionFactor conversion from charge to ADC 0.125

TOFtdcConversionFactor conversion from time to TDC 0.025

TOFpmtQuantumEfficiency PMT collection e�ciency 0.25

TOFscintLightSpeed propogation speed in slab 170 mm/ns

• Time digitization The hit time is propogated to the PMTs at either end of the slab. The speed
of light in the scintillator, based on earlier calibration, is controlled by the TOFscintLightSpeed

data card. The time is then smeared by the PMT time resolution and converted to TDC.

After converting the energy deposit to ADC and the time to TDC, the TDC values are �uncalibrated�
so that at the reconstruction stage they can be corrected just as is done with real data.

The data cards that control the digitization are listed in Table 9.2.
NOTE: Do not modify the default values.

10.2 Reconstruction

The reconstruction software treats both data and Monte Carlo the same way. In the case of real data,
the input to the reconstruction chain is TOF Digits (MapCppTOFDigit) and in the case of Monte Carlo
it is the digitized information from MapCppTOFMCDigitizer.

• Digits (MapCppTOFDigit,MapCppTOFMCDigitizer) Digits are formed from the V1724 ADCs and
V1290 TDCs.

• Slab Hits (MapCppTOFSlabHits) The SlabHits routine takes individual PMT digits and associates
them to reconstruct the hit in the slab. All PMT digits are considered. If there are multiple
hits associated with a PMT, the hit which is earliest in time is taken to be the real hit. Then,
if both PMTs on a slab have hits, the SlabHit is formed. The TDC values are converted to time
(ToftdcConversionFactor) and the hit time and charge associated with the slab hit are taken to
be the average of the two PMT times and charges respectively. In addition, the charge product of
the PMT charges is also formed.

• Space Points (MapCppTOFSpacePoints) A space point pixel in the TOF is a combination of x and
y slab hits. All combinations of x and y slab hits in a given station are considered. If the station
is a trigger station, an attempt is made to �nd the �trigger pixel� � i.e. the x, y combination that
triggered this event. This is done by applying calibration corrections to the slab hits, and then
asking if the average time in this pixel is consistent with the trigger within some tolerance. In other

66

Table 10.3: TOFSpacePoint class members.
Name Meaning
pixel_key string encoded with the TOF station,plane,slab
slabY int encoded with the TOF station,plane,slab
slabX int encoded with the TOF station,plane,slab
time double � calibrated space point time
charge int � average of the charges of the constitutent slabs
charge_product int � average of charge products of the constitutent slabs
dt double � time di�erence between the x and y slabs = resolution

Table 10.4: Data cards for TOF reconstruction.
Name Meaning Default
TOF_trigger_station conversion 0.005 MeV

TOF_findTriggerPixelCut resolution for smearing the
PMT time

0.1 ns

TOF_makeSpacePiontCut PMT collection e�ciency 0.25

Enable_t0_correction light attenuation in slabs 1400 mm

Enable_triggerDelay_correction conversion from charge to
ADC

0.125

Enable_timeWalk_correction conversion from time to TDC 0.025

words, if tx and ty are the times corresponding to the x and y slab hits, is
tx,calib+ty,calib

2 < ttriggercut?
If no x, y combination produces a trigger pixel, the space point reconstruction stops and no space
points are formed. This is because to apply the calibration corrections to the slab hit times, it is
essential know the trigger pixel.

Once a trigger pixel is found, all x, y slab hit combinations are again treated as space point can-
didates. The calibration corrections are applied to these hit times. If | tx − ty | is consistent with
the resolution of the detector, the combination is said to be a space point. The space point thus
formed contains the following information

This is used by the reconstuction of the TOF detectors

#TOF_cabling_file = "/files/cabling/TOFChannelMap.txt"

#TOF_TW_calibration_file = "/files/calibration/tofcalibTW_dec2011.txt"

#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF1_dec2011.txt"

#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF0.txt"

#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF1_dec2011.txt"

#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF0.txt"

the date for which we want the cabling and calibration

date can be 'current' or a date in YYYY-MM-DD hh:mm:ss format

#TOF_calib_date_from = 'current'

TOF_calib_date_from = '2010-08-10 00:00:00'

TOF_cabling_date_from = 'current'

Enable_timeWalk_correction = True

Enable_triggerDelay_correction = True

Enable_t0_correction = True

10.3 Database

• Constants in the CDB

• Datacards

• Routines to access

67

Table 10.5: Data cards for accessing calibrations from CDB.
Name Meaning Default
TOF_calib_date_from conversion '2010-08-10 00:00:00'|
TOF_cabling_date_from conversion current

68

Chapter 11

The Trackers

11.1 Introduction

11.1.1 Overview

This chapter describes the software used to simulate and reconstruct the MICE scintillating �bre trackers.
Section 11.2, 11.3 and 11.4 are reference sections providing descriptions of the o�cial de�nitions, reference
surfaces and coordinate systems, and reconstruction algorithms respectively. The later sections provide
descriptions of the code as implemented in MAUS. A quick start guide regular users appears in below in
section 11.1.2.

11.1.2 Quick start guide

Example scripts and datacards for the tracker reconstruction can be found in the bin/user/scifi

directory. A typical top level python �le to run a simulation with tracker reconstruction is shown below.

import i o # gene r i c python l i b r a r y f o r I /O
import gz ip # For compressed output # py l i n t : d i s a b l e=W0611
import MAUS

def run () :
This input gene ra t e s empty s p i l l s ,
to be f i l l e d by the beam maker l a t e r
my_input = MAUS. InputPySpi l lGenerator ()

The mappers f o r to s e t up the s imu la t i on
my_map = MAUS.MapPyGroup ()
my_map. append (MAUS.MapPyBeamMaker ()) # beam cons t ruc t i on
my_map. append (MAUS. MapCppSimulation ()) # geant4 sim

The mappers f o r t r a cke r MC d i g i t i s a t i o n and recon
my_map. append (MAUS. MapCppTrackerMCDigitization ())
my_map. append (MAUS. MapCppTrackerRecon ())

Spec i f y c on f i g parameters v ia a datacard
datacards = io . Str ingIO (u"")

The Pattern Recognit ion reducer to d i sp l ay t ra ck s
reducer = MAUS. ReduceCppPatternRecognition ()

Output to ROOT f i l e
my_output = MAUS. OutputCppRoot ()

The Go() d r i v e s a l l the components you pass in
MAUS.Go(my_input , my_map, reducer , my_output , datacards)

i f __name__ == '__main__' :
run ()

69

Listing 11.1: Example SciFi python script

Some important datacard parameters to consider when using the tracker software are:

• SciFiPRHelicalOn - set to True or False for helical pattern recognition

• SciFiPRStraightOn - set to True or False for straight pattern recognition

• SciFiKalmanOn - set to True or False for running the �nal track �t

11.2 De�nitions

11.2.1 Labelling of upstream and downstream trackers

The o�cial labels for the two trackers are:

Upstream tracker → Tracker#1
Downstream tracker → Tracker#2

The internals of the code however will frequently refer to the upstream tracker as 0, and the downstream
tracker as 1. In this document, we will use the o�cial convention.

11.2.2 Station numbering

The tracker reference document de�nes the station �labelling� of the stations in relation to the focus-coil
module that is immediately downstream of tracker 1 or, equivalently, immediately upstream of tracker
2. The station closest to the focus-coil module in question is labelled �1�. The label then increases such
that station 5 is the station closest to the optical patch panel. The scheme is summarised in table 11.1
and �gure 11.1.

Table 11.1: Station numbering scheme. The �label� of the stations that make up a MICE tracker runs
from 1 to 5. The location of the station in relation to the patch panel and the absorber is reported in
the column labelled �Location�.
Location Label
Closest to absorber (furthest from patch panel) 1

2
3
4

Furthest from absorber (closest to patch panel) 5

11.2.3 Doublet layer

Each station consists of three �doublet layers� of 350µm scintillating �bres glued onto a carbon-�bre
station body. The doublet layers are labelled u (sometimes refered to also as x), w and v. The layers
are arranged such that the �bres in one layer run at an angle of 120◦ to the �bres in each of the other
layers as shown in �gure 11.2a. The arrangement of the �bres within a doublet layer is shown in �gure
11.2b. The con�guration of the seven �bres ganged for readout via a single clear-�bre light-guide is also
indicated.

Doublet-layer numbering

The order in which the doublet layers were glued onto the station body is shown in �gure 11.3. The u
layer was glued to the station body �rst. The doublet layer was glued such that the ��bre side� of the
doublet layer was glued to the station body; i.e. the mylar sheet faces away from the station body. The
w layer was then glued onto the outer surface of the u layer. The �bre side of the w layer was glued to
the mylar sheet of the u layer such that the mylar sheet of the w layer also faces away from the station
body. Finally, the v layer was glued onto the assembly. The gluing arrangement was the same as for the
u and w layers, i.e. the mylar sheet of the v layer also faces away from the station body.

70

Figure 11.1: Schematic diagram of the MICE tracker. The �ve stations are shown supported by the
carbon-�bre space frame, with �bres omitted for clarity. The station numbering scheme is indicated
together with the direction in which the clear-�bre light-guides leave the tracking volume.

u

(a)
w

v

213.5
627.3

277.3
350(b)

Mylar

Figure 11.2: (a) Arrangement of the doublet layers in the scintillating-�bre stations. The outer circle
shows the solenoid bore while the inner circle shows the limit of the active area of the tracker. The grey,
blue, and green regions indicate the direction that the individual 350µm �bres run (moving outward
from the centre) in the u, v, and w planes respectively. (b) Detail of the arrangement of the scintillating
�bres in a doublet layer. The �bre spacing and the �bre pitch are indicated on the right-hand end of the
�gure in µm. The pattern of seven �bres ganged for readout in a single clear-�bre light-guide is shown
in red. The sheet of Mylar glued to the doublet layer is indicated.

71

r

zuwv
Figure 11.3: The order in which the doublet layers were glued onto the station body.The station body
is indicated by the solid black lines. The u layer (shown as the grey line was glued to the station body
�rst. The w (indicated by the green line) was then glued onto the outer surface of the u layer. The
outer doublet layer, the v layer (shown as the blue line) was then glued onto the assembly. The station
reference surface and the direction of increasing z are shown as the thin black lines.

11.2.4 Fibre-channel numbering

The numbering of the groups of seven �bres ganged for readout is shown in �gure 11.4. With the mylar
surface facing up, and with the tails leading out to the station connectors taken to be at the bottom of
the �gure, the �bre-channel increases from left to right. The coordinate measured by the doublet layer
(u, v or w) is taken to increase in the same direction as the channel number. The origin of the measured
coordinate is taken to be at the position of the central �bre.

11.3 Reference surfaces and coordinate systems

11.3.1 Doublet layer

The doublet-layer reference surface is de�ned to be the �at plane that is tangential to the outer surface
of the mylar plane as shown in Figure 11.5a. The measured coordinate, α ∈ u, v, w, is de�ned to lie in
this plane and the α axis is perpendicular to the direction in which the �bres run. The doublet-layer zd
axis is de�ned to to be perpendicular to the doublet-layer reference surface increasing in the direction
indicated in the �gure. The direction in which the measured coordinate, α increases is indicated in �gure
11.5b. The orthogonal coordinate in the doublet-layer reference surface that with α and zd completes a
right handed coordinate system is referred to as β. The β axis is also indicated in �gure 11.5b.

11.3.2 Station

The station reference surface is de�ned to coincide with the reference surface of the v doublet layer (see
�gure 11.6). The station coordinate system is de�ned such that the ys axis is coincident with v axis, the
zs axis is coincident with the zd axis of the v layer and the xs axis completes a right-handed coordinate
system.

11.3.3 Tracker

The tracker reference surface is de�ned to coincide with the reference surface of station 1. The tracker
coordinate system is de�ned such that the zt axis coincides with the nominal axis of cylindrical symmetry
of the tracker as shown in �gure 11.7. The tracker zt coordinate increases from station 1 to station 5.

72

Doublet layer
(mylar side up)

Central Fibre

Channel 1 Channel 212
or 214

Fibre run to the station optical connnectors taken to be towards the bottom of the figure

Figure 11.4: The order in which �bre channels (groups of seven �bres) are numbered. The sensitive
surface of the doublet layer is indicated by the solid circle. The direction in which the �bres run is
indicated by the vertical lines. The station optical connectors are taken to be at the bottom of the �gure
as indicated. With the mylar sheet taken to be facing up, �bre-channel number 1 is to the left of the
central �bre. The �bre-channel number increases from left to right. The �zero� of the coordinate (u, v or
w increases) measured by the doublet layer is taken to be the position of the central �bre. The direction
in which the coordinate measured by the double layer increases is indicated by the red arrow.

73

α

z
d

a) b)

[Station optical connectors.]

α

β

Figure 11.5: Reference surfaces and coordinate-system de�nitions for the double layer and station. a)
The �bres in the doublet layer are shown as the shaded circles, the central channel being shaded pink.
The mylar layer is indicated by the solid black corrugated line. The doublet-layer reference surface is
indicated by the vertical straight line, the arrow labelled α indicates the direction in which the coordinate
measured by the doublet layer (u, v or w) increases. The direction of the zd axis is indicated. b) View
of doublet layer looking down on the mylar layer with the optical connectors at the bottom of the
�gure. The coordinate measured by the doublet layer (u, v or w) is indicated by the axis labelled α.
The orthogonal axis, i.e. the direction in which the �bres run, is labelled β. The origin of the (α, β)
coordinate system is taken to be at the centre of the circular active area.

u

v
w

zs

ys

Figure 11.6: The carbon-�bre station body is indicated by the heavy solid black lines. The three doublet
layers are indicated by the solid grey (u), green (w) and blue (v) lines. The station reference surface is
shown by the solid vertical line coincident with the reference surface of the doublet layer labelled v. The
direction ys axis, de�ned to be coincident with the v axis and the zs axes are shown as the solid, black
arrows. The xs axis completes a right-handed coordinate system and therefore points into the page.

74

xtyt

zt

Figure 11.7: The outline of the components that make up the MICE tracker are shown in the line
drawing. The tracker reference surface coincides with the reference surface of station 1. The tracker
coordinate system is indicated by the solid lines. The yt axis is de�ned to be coincident with the ys axis
in the station coordinate system. The zt axis runs along the nominar axis of the tracker. The xt axis
completes a right-handed coordinate system.

The tracker yt axis is de�ned to coincide with the ys axis of station 1 and the tracker xt axis completes
a right-handed coordinate system.

11.3.4 Coordinate transformations

Doublet-layer to station

The transformation from doublet-layer to station coordinates is achieved using the rotation R
SD

de�ned
by:

rs =
(
xs
ys

)
= R

SD
m =

(
cos θD − sin θD
sin θD cos θD

)(
α
β

)
; (11.1)

where θD is the angle which the �bres that make up the doublet-layer make to the xs axis in the station
coordinate system.

11.4 Reconstruction Algorithms

11.4.1 Hits and clusters

A track passing through a particular doublet layer produces scintillation light in one or at most two �bre
channels. For each channel �hit�, the tracker data acquisition system records the channel number, n,
and the pulse height. After calibration, the pulse height is recorded in terms of the number of photo-
electrons (npe) generated in the Visible Light Photon Counter (VLPC) illuminated by the hit channel.
Occasionally, showers of particles or noise can cause three or more neighbouring channels to be hit. The
term �clusters� is used to refer to an isolated hit or a doublet cluster.

The position of a hit in the doublet-layer coordinate system may be determined from the channel
number. For isolated hits, the measured coordinate α ∈ u, v, w is given by:

α = cp(n− n0) ; (11.2)

where n0 is the channel number of the central �bre and cp is the channel pitch given by:

cp = 3.5fp (11.3)

where fd is the �bre diameter (fd = 350µm) and fp = is the �bre pitch (fp = 427µm see �gure 11.2).
For clusters in which two channels are hit (�doublet clusters�, see �gure 11.8), the measured coordinate

75

MAUS

Reality

Figure 11.8: Channel overlap as simulated in MAUS; �ne-tuning reduces the error associated to doublet
clusters.

is given by:

α = cp

[
(n1 + n2)

2
− n0

]
; (11.4)

where n1 and n2 are the channel numbers of the two hit �bres.

α = cp

[∑
i npeini∑
i npei

]
; (11.5)

where the subscript i indicates the ith channel. The pulse-height for doublet clusters is determined by
summing the pulse height of the hits that make up the cluster.

The �measurement vector�, m is de�ned as:

m =
(
α
β

)
; (11.6)

where α is given above and, in the absence of additional information, β = 0. The corresponding covariance
matrix is given by:

Vm =
(
σ2
α 0
0 σ2

β

)
; (11.7)

where σ2
α and σ2

β are the variance of α and β respectively. The variance on α for a single-hit cluster is
given by:

σ2
m =

c2p
12
. (11.8)

For a doublet-cluster, the variance is given by:

σ2
m =

∆2
α

12
; (11.9)

where ∆α =? is the length of the overlap region between neighbouring �bre channels (see �gure 11.8).
The variance of the perpendicular coordinate, β, depends on the e�ective length, leff of the �bre (see

�gure ?? and Appendix ??) and is given by:

σ2
β =

l2eff

12
; (11.10)

where:

leff =?? . (11.11)

76

11.4.2 Space-point reconstruction

This section describes the space-point reconstruction, the algebra by which the cluster positions are
translated in to tracker coordinates and, to some extent, the algorithm.

Selection of clusters that form the space-point

For each particle event, the clusters found within each doublet layer are ordered by �bre-channel number.
Taking each station in turn, an attempt is made to generate a space point using all possible combinations
of clusters. The three clusters, one each from views u, v and w, that make up a space point satisfy:

nu + nv + nw = nu0 + nv0 + nw0 ; (11.12)

where nu, nv and nw are the �bre numbers of the clusters in the u, v and w views respectively and nu0 ,
nv0 and nw0 are the respective central-�bre numbers (see Appendix 17.1).

A triplet space point is selected if:

|(nu + nv + nw)− (nu0 + nv0 + nw0)| < K . (11.13)

Once all triplet space-points have been found, doublet space-points are created from pairs of clusters
from di�erent views.

Crossing-position calculation

Doublet space-points The position of the doublet space-point in station coordinates, rs, is given by:

rs =
(
xs
ys

)
(11.14)

= R
SD1

m1 (11.15)

= R
SD2

m2 ; (11.16)

where the measurement vector corresponding to the ith cluster:

mi =
(
αi
βi

)
; (11.17)

and the rotation matrix R
SDi

are de�ned in section 11.4.1. The simultaneous equations 11.15 and 11.16
contain two unknowns, β1 and β2. Equations 11.15 and 11.16 may be rewritten:

m1 = R−1

SD1
R
SD2

m2 . (11.18)

De�ning:

S = R−1

SD1
R
SD2

(11.19)

=
(
s11 s12

s21 s22

)
; (11.20)

Equations 11.15 and 11.16 may be solved to yield:

β2 =
α1 − s11α2

s12
(11.21)

β1 = s21α2 + s22β2 . (11.22)

The position of the space-point may now be obtained from equation 11.15 or 11.16.

77

Figure 11.9: Right panel: Fibre arrangement in station 5 of tracker 1. Left panel: Fibre arrangement in
the rest of the stations. The shaded region shows the intersection of the three channels is triangle for
every station other than station 5, where itwill be an hexagon.

Triplet space-points As shown in �gure 11.9, the �bres layout is of one of two types. In one case
(right panel of �gure 11.9), the centre of the channels, one in each of the three views, cross intersect at
a single point. In this case, the position of the crossing can be calculated as described in section 11.4.2.
When the area of overlap of the three channels forms a triangle (�gure 11.9 left panel), the centre of area
of overlap is given by:

x̄ =
2
3
cp ; and (11.23)

ȳ = 0 . (11.24)

11.4.3 Pattern recognition

Straight-line pattern recognition

In the absence of a magnetic �eld, the tracks passing through the tracker may be described using a
straight line in three dimensions. Taking the z coordinate as the independent parameter, the track
parameters may be taken to be:

vsl =


x0

y0

tx
ty

 ; (11.25)

where, x0 and y0 are the position at which the track crosses the tracker reference surface, tx = dx
dz and

ty = dy
dz . The track model may then be written:

x = x0 + ztx; and (11.26)

y = y0 + zty . (11.27)

Pattern recognition then proceeds as follows. A space-point is chosen in each of two stations, i and j
where i and j label two di�erent stations and j > i. Ideally, i = 1 and j = 5. However, a search of all
combinations of pairs for which j − i > 1 is made, taking the pairs in the order of decreasing separation
in z; i.e. in order of decreasing ∆zji = zj − zi. Initial values for the track parameters,

vsl
Init =


xInit

0

yInit
0

tInit
x

tInit
y

 , (11.28)

are then calculated as follows:

78

tInit
x =

xj − xi
zj − zi

; (11.29)

xInit
0 = xi − zitInit

x ; (11.30)

tInit
y =

yj − yi
zj − zi

; and (11.31)

yInit
0 = yi − zitInit

y ; (11.32)

where (xi, yi, zi) are the coordinates of space-point i, etc. A search is then made for space-points in each
of the stations, k, between station i and station j. The distance between the x and y coordinates of
the space-points in the stations k; j < k < i and the line de�ned by the initial track parameters is then
calculated at the reference surface of station k as follows:

δxk = xk − (xInit
0 + zkt

Init
x) and (11.33)

δyk = yk − (yInit
0 + zkt

Init
y) . (11.34)

Points are accepted as part of a �trial� track if:

|δxk| < ∆x and (11.35)

|δyk| < ∆y . (11.36)

If at least one space-point satis�es this selection, a �trial track� is formed consisting of the space-points
selected in stations i, k, ... and j. For each �trial track�, a straight-line �t is performed to calculate the
�t χ2:

χ2 = χ2
x + χ2

y . (11.37)

If the �t χ2 satis�es:

χ2

N − 2
< χ2

cut , (11.38)

then the trial track is accepted.

Helix pattern recognition

Helix parameters In the presence of a magnetic �eld, the tracks passing through the tracker may be
described using a helix. In tracker coordinates, the tracks form circles in the (x, y) plane. De�ning s
to be the length of the arc swept out by the track in the (x, y) plane, a track may be described using
a straight line in the (s, z) plane. Taking the z coordinate as the independent parameter, the track
parameters may be taken to be:

vhlx =


x0

y0

ψ0

ts
ρ

 ; (11.39)

where, x0 and y0 are the position at which the track crosses the tracker reference surface, ψ0 is the
azimuthal angle of the line tangent to the track in the (x, y) plane, ts = ds

dz and ρ is the radius of
curvature. The angle ψ0 is chosen such that:

ψ̂0 = k̂× r̂ ; (11.40)

where r̂ is the unit vector in the direction (x0, y0) and k̂ is the unit vector parallel to the z axis. ψ̂0 is the
unit vector tangent to the track and in the direction is de�ned by ψ0. With this de�nition, the projection
on the (x, y) plane of a positive track propagating in the positive z direction sweeps anticlockwise.

79

Track model for pattern recognition To build up the track model, consider a track-based coor-
dinate system which has its origin at the point (x0, y0) and in which the x′ axis is parallel to the line
joining (x0, y0) to the centre of the circle described by the track, the y′ axis is parallel to ψ̂0 and the z′

axis is parallel to k̂ (see �gure 11.10).
A point, i, on the track at (xi, yi) (tracker coordinates) at which the track direction is ψi may be

used to write down the track model as:

x′i = ρ[cosφ′i − 1] and (11.41)

y′i = ρ sinφ′i ; (11.42)

where:

tan
φ′i
2

=

√
(xi − x0)2 + (yi − y0)2

2ρ
. (11.43)

The z coordinate is taken as a parameter since the construction of the trackers ensures that each reference
surface (tracker, station or doublet layer) is at a well de�ned z. The distance travelled in the (x, y) plane
to reach the ith point, si, is related to the z coordinate of the ith point by:

si = tszi ; (11.44)

since the track is refered to the tracker reference surface. The transformation from the primed to tracker
coordinates is achieved with a rotation, R′, through an angle −β and a translation, T ′ from (x0, y0) to
(0, 0): (

x
y

)
= T ′ +R′

(
x′

y′

)
. (11.45)

These transformations are given by:

R′ =
(

cosβ − sinβ
sinβ cosβ

)
; and (11.46)

T ′ =
(
−x0

−y0

)
; (11.47)

(11.48)

where:

β = ψ0 −
π

2
. (11.49)

Collecting space-points in the (x, y) plane Helix pattern recognition follows the same conceptual
steps as the straight-line pattern recognition described in section 11.4.3 A space-point is chosen in each
of three stations, i, j and k where k > j > i. Ideally, i = 1, j = 3 and k = 5. However, a search of all
combinations of three space-points for which k − j > 0 and j − i > 0 is made, taking the combinations
in the order of decreasing separation in z; i.e. in order of decreasing ∆zkj = zk − zj and ∆zji = zj − zi.

A circle in the (x, y) plane may be written (see Appendix 17.3):

α(x2 + y2) + βx+ γy + κ = 0 ; (11.50)

where:

X0 =
−β
2α

; (11.51)

Y0 =
−γ
2α

; (11.52)

ρ =

√
β2 + γ2

4α2
− κ

α
; (11.53)

80

Figure 11.10: Schematic diagram of track in (x, y) plane.

81

and (X0, Y0) are the coordinates of the centre of the circle. Initial values for α, β, γ and κ are obtained
as described in Appendix 17.3. The distance between the x and y coordinates of the space-points in the
stations l; l 6= i, j, k and the circle de�ned by equation 11.50 is given by:

δ =
√

(xl −X0)2 + (yl − Y0)2 − ρ . (11.54)

In terms of the parameters α, β, γ and κ, δ may be written:

δ =

√
(x2
l + y2

l) +
β2 + γ2

4α2
+
βxl + γyl

α
−
√
β2 + γ2

4α2
− κ

α
. (11.55)

Points are accepted as part of a �trial� track if:

|δ| < ∆C . (11.56)

If at least one space-point satis�es this selection, a �trial track� is formed consisting of the space-points
selected in stations i, j, k, ... and l.

For each �trial track�, a circle �t is performed to calculate the �t χ2
C . If χ

2
C satis�es:

χ2

N − 3
< χ2

C cut , (11.57)

then the trial track is accepted.

Collecting space-points in the (s, z) plane The set of space points which make up the trial track
provide a set of (s, z) coordinates which should lie on a straight line. Equation 11.44 implies:

si = ρ(φ′i − φ′0) = tszi . (11.58)

The angles turned through as the track propagates from station i to station j (∆Φji), from station j to
station k (∆Φkj) and from station i to station k are then given by:

∆Φji = φ′j − φ′i ; (11.59)

∆Φkj = φ′k − φ′j ; and (11.60)

∆Φki = φ′k − φ′i . (11.61)

The de�nition of the tracker coordinate system ensures that:

∆Φji + 2nπ
∆zji

=
∆Φkj + 2mπ

∆zkj
=

∆Φki + 2(n+m)π
∆zki

. (11.62)

De�ning:

ηji =
∆Φji
∆zji

; (11.63)

ηkj =
∆Φkj
∆zkj

; and (11.64)

ηki =
∆Φki
∆zki

; (11.65)

Equations 11.62 may be inverted to yield:

m =
∆zkj
2π

[ηji − ηkj] +
∆zkj
∆zji

n . (11.66)

The correct values for n and m may now be obtained by calculating:

Λ = ηji − ηkj ; and (11.67)

Γ =
2π

∆zji

[
m− ∆zki

∆zji
n

]
. (11.68)

82

The most likely values of n and m for the cases of interest are n = 0 and m = 0. Therefore, searching
for values of n and m for which:

|Λ− Γ| < ∆sz ; (11.69)

will yield the change in φ′ that corresponds to a step in z.
The �nal step in gathering the points in (s, z) is to perform a straight line �t to the set of points

corrected for multiple turns between stations. If the track �t χ2
sz satis�es:

χ2
sz < χ2

szC ; (11.70)

then an attempt is made to �t a helix to the set of space points that make up the track.

Helix �t At present, pattern recognition does not employ a full 3D helix �t, due to the complexity of
performing a non-linear least squares �t. The following is for reference only.

The construction of the tracker allows the helical locus of the points on the track to be parmeterised
as a function of z. The step from station i to station j, a change in the z position of the track of
∆zji = zj − zi, results in a change in φ′, and therefore s, where:

∆Φji =
ts∆zji
ρ

; and (11.71)

∆sji = ρ∆Φji = ρ(ψj − ψi) . (11.72)

The coordinates of the track at the ith station may now be written:

vhlx
i = vhlx + ∆vhlx

i ; (11.73)

where:

∆vhlx
i =


∆xi0
∆yi0
∆Ψi0

0
0

 . (11.74)

∆Ψi0 = ψi − ψ0 and ∆xi0 and ∆yi0 are obtained by evaluating:

∆xi0 = xi − x0 ; and (11.75)

∆yi0 = yi − y0 (11.76)

where:

hhlx
i =

(
xi
yi

)
= T ′ +R′

(
x′i
y′i

)
; (11.77)

and:

φ′i = φ0 + ∆Ψi0 . (11.78)

The helix �t described in Appendix 17.4 proceeds by minimizing:

χ2
hlx =

N∑
i

{[
msp

i − hhlx
i

]T [
V sp

i

]−1 [
msp

i − hhlx
i

]}
. (11.79)

If the helix �t χ2
hlx satis�es:

χ2
hlx

2N − 5
< χ2

hlxC ; (11.80)

then the trial track is accepted.

83

11.4.4 Track �t

11.5 Data structure

The tracker data structure, a subset of the general MAUS data structure, is shown in �gure 11.11. The
basic unit of the MAUS data structure is the spill, representing the data produced by a single actuation
of the MICE target. All MAUS modules (mappers, reducers, etc.) act on one spill at a time. The
spill is then split into two sides, Monte Carlo data and reconstructed data. A key rule is that MC data
must never be stored on the reconstruction side. Each side has its own event class, representing data
corresponding to a single MICE particle trigger event. The relationship between the spill and the MC
and recon event objects is one-to-many.

Within an MC event the only data object pertaining to the tracker is the SciFiHit, implemented as
template class of the generic Hit class. This class stores the MC data used by the reconstruction to
form SciFiDigits (via the map MapCppTrackerMCDigitisation). The relationship between MC events
and SciFiHits is one-to-many.

On the real data side each recon event holds a single SciFiEvent (a one-to-one relationship). The
SciFiEvent then holds a collection (implemented as C++ standard vectors of pointers) for each data type
used in the reconstruction process: SciFiDigits, SciFiClusters, SciFiSpacePoints, SciFiStraightPRTracks,
SciFiHelicalPRTracks, SciFiStraightKalmanTracks, and SciFiTracks. Additionally SciFiTrackPoints are
held by each SciFiTrack instance.

11.6 Code Design

11.6.1 General Code Structure

The main body of the tracker code is implemented as three distinct MAUS map modules and, at present,
one reducer module. There also exist various helpful top-level user tools, and the tracker geometry, cali-
bration and con�guration �les. A diagram showing the tracker software data �ow with the corresponding
modules is shown in �gure 11.12, with the following sections expanding on each area.

MapCppTrackerDigits

This map is used to digitise real data. It calls on additional functionality from the RealDataDigitisation
class, which is stored in src/common_cpp/Recon/SciFi.

MapCppTrackerMCDigitisation

This map is used to digitise Monte Carlo data.

MapCppTrackerRecon

This map performs the main reconstruction work, moving from digits to cluster to spacepoints to pat-
tern recognition tracks, and �nally full Kalman tracks. Most work is farmed out to backend C++
classes. The following are the top level classes for each stage of the reconstruction, and are stored in
src/common_cpp/Recon/SciFi:

• SciFiClusterRecon - cluster reconstruction from digits

• SciFiSpacepointRecon - spacepoint reconstruction from cluster

• PatternRecognition - association of spacepoints to tracks, and crude initial track �t

The backend classes for the �nal track �t are stored under src/common_cpp/Recon/Kalman and
src/common_cpp/Recon/Bayes, the top level class being KalmanTrackFit. Other classes used include:

• KalmanFilter

• KalmanHelicalPropagator

• KalmanStraightPropagator

• KalmanState

• KalmanSeed

84

Recon Event

SF Digit

MC Event

Spill

MAUS

Tracker

SF Helical
PR Track

n_points
tracker number
type
spacepoints*

SF Straight
PR Track

n_points
tracker number
type
spacepoints*

SF Cluster

used
spill number
event number
tracker number
station number
plane number
plane ID number
number of PE
digits*
direction (ThreeVec)
position (ThreeVec)

SF
SpacePoint

used
spill number
event number
tracker number
station number
number of PE
type
clusters*
position (ThreeVec)

used
spill number
event number
tracker number
station number
number of PE
channel number

SF Event

digits*
clusters*
spacepoints*
straight PR tracks*
helical PR tracks*
straight Kalman tracks*
helical Kalman tracks*

SF Hit

track ID
particle ID
energy
energy deposited
charge
time
position (ThreeVec)
momn (ThreeVec)
used
tracker number
station number
plane number
fibre number

SF Track

tracker number
P value
charge
algorithm used
trackpoints*

SF
TrackPoint

tracker number
station number
plane number
channel number
x, y
px, py, pz
covariance
pull
residual
smoothed residual

Figure 11.11: The tracker data structure and its position within the general MAUS data structure. An
asterisk indicates a vector of pointers. The dotted lines indicate cross links realised as vectors of pointers.

85

S
ci

F
i

H
it

R
a

w
 D

a
ta

 (
b

in
)

U
n

p
a

ck
er

C
lu

st
er

 R
ec

o
n

S
p

a
ce

 P
o

in
t

R
ec

o
n

P
a

tt
er

n

R
ec

o
g

n
it

io
n

T
ra

ck
 F

it
ti

n
g

M
C

 R
ec

o
n

S
ci

F
i

D
ig

it

R
a

w
 D

a
ta

 (
js

o
n

)

M
a

p
p

in
g

 +
 C

a
li

b
ra

ti
o

n

S
ci

F
i

C
lu

st
er

S
ci

F
i

S
p

a
ce

 P
t

S
ci

F
i

P
R

 T
ra

ck

S
ci

F
i

T
ra

ck

M
ap

C
p

p
T

ra
ck

er
M

C
D

ig
it

is
at

io
n

M
ap

C
p

p
T

ra
ck

er
D

ig
it

s

M
ap

C
p

p
T

ra
ck

er
R

ec
o

n

R
ea

l
D

at
a

M
o

n
te

 C
ar

lo

R
ec

o
n

st
ru

ct
io

n
M

C
 S

ci
F

i
N

o
is

e

M
C

 P
a

rt
ic

le

M
ap

C
p

p
S

im
u

la
ti

o
n

M
ap

P
y

B
ea

m
M

ak
er

In
p

u
tC

p
p

D
A

Q
O

ff
li

n
eD

at
a

Figure 11.12: Schematic of the tracker software data showing MC and Real data input, and subsequent
reconstruction. MAUS modules corresponding to given process are indicated (MapCppTrackerRecon
encompasses all of the reconstruction, shown in blue). Once digits have been formed, reconstruction is
agnostic as to whether the MC or Real path was followed.

86

ReduceCppPatternRecognition

This reducer displays spacepoints and pattern recognition tracks by tracker, in the x− y, x− z and y− z
projections, an example being shown in �gure 11.13. It also creates an InfoBox, which displays various
information for the spill and run, such as the number of clusters, spacepoints, etc. The plots are made
using ROOT TGraphs, and the InfoBox with a TPaveText.

x(mm)
-10 0 10 20 30 40 50

y(
m

m
)

-40

-20

0

20

40

60

Tracker 2 X-Y Projection

z(mm)
0 200 400 600 800 1000 1200

x(
m

m
)

-10

0

10

20

30

40

50

Tracker 2 Z-X Projection

z(mm)
0 200 400 600 800 1000 1200

y(
m

m
)

-40

-20

0

20

40

60

Tracker 2 Z-Y Projection

Figure 11.13: Output from the pattern recognition reducer showing the real space projections of a three
event spill in tracker 2.

Reducer Backend

The backend classes for the reducers are held in src/common_cpp/Plotting/SciFi. They consist of
a reduced tracker data container class, TrackerData, a series of plotting class based on ROOT, and a
manager class TrackerDataManager, used to populate the TrackerData and call the various plotters. The
plotters themselves inherit from a base class, TrackerDataPlotterBase. Each daughter class overloads
the bracket operator, taking in arguments of two TrackerData objects, one per tracker, and a ROOT
TCanvas, to plot on. The current types available are:

• Info Box: displays various information on the spill and run in text

• Spacepoints: displays spacepoint positions in x− y, x− z, and y − z

• Tracks: displays pattern recognition tracks in x− y, x− z, and y − z

• XYZ: calls Tracks and Spacepoints to display them both together

• SZ: displays pattern recognition tracks in s − z (s being the distance swept out by a particle in
the x− y plane)

87

11.6.2 Tracker con�guration variables

Variable Default Description
SciFiMUXNum 7
SciFiFiberDecayConst 2.7
SciFiFiberConvFactor 3047.1
SciFiFiberTrappingE� 0.056
SciFiFiberMirrorE� 0.6
SciFiFiberTransmissionE� 0.8
SciFiMUXTransmissionE� 1.0
SciFivlpcQE 0.8
SciFivlpcEnergyRes 4.0 VLPC energy resolution (MeV)
SciFivlpcTimeRes 0.2 VLPC time resolution (ns)
SciFiadcFactor 6.0
SciFitdcBits 16
SciFitdcFactor 1.0
SciFinPlanes 3
SciFinStations 5
SciFinTrackers 2
SciFiNPECut 2.0
SciFiClustExcept 100
SciFi_sigma_tracker0_station5 0.4298 Tracker 1 station 5 resolution (mm)
SciFi_sigma_triplet 0.3844 Spacepoint triplet resolution (mm)
SciFi_sigma_z 0.081 (mm)
SciFi_sigma_duplet 0.6197 (mm)
SciFiPRHelicalOn True Helical pattern recognition �ag
SciFiPRStraightOn True Straight pattern recognition �ag
SciFiRadiusResCut 150.0 Helix radius cut (mm)
SciFiNTurnsCut 0.75 Cut checking turns between stations is correct
SciFiMaxPt 180.0 Transverse momn. upper limit cut used in pat rec
SciFiMinPz 180.0 Longitudinal momn. lower limit cut used in pat rec
SciFiPerChanFlag 0
SciFiNoiseFlag 1.5
SciFiCrossTalkSigma 50.0
SciFiCrossTalkAmplitude 1.5
SciFiDarkCountProababilty 0.017 Probability of dark count due to thermal electrons
SciFiChannelCalibList Channel calibration data location
SciFiParams_Z 5.61291
SciFiParams_Plane_Width 0.6523
SciFiParams_Radiation_Legth 424.0
SciFiParams_Density 1.06
SciFiParams_Mean_Excitation_Energy 68.7
SciFiParams_A 104.15
SciFiParams_Pitch 1.4945
SciFiParams_Station_Radius 160.
SciFiParams_RMS 370.
SciFiSeedCovariance 1000 Error estimate for seed values of the Kalman �t
SciFiKalman_use_MCS True Flag to add multiple scattering to the Kalman �t
SciFiKalman_use_Eloss True Flag to add energy loss to the Kalman �t
SciFiUpdateMisalignments False Do a misalignment search and update
SciFiKalmanVerbose False Dump information per �tted track

11.7 The Monte Carlo

The tracker Monte Carlo can be run using the script at the beginning of the tracker section. In addition
to the basic Monte Carlo noise from dark count in the VLPCs can be simulated by including the mapper
MapCppTrackerMCNoise, which should be run before MapCppTrackerMCDigitization. Reconstruction
after digitization is agnostic to source by design decision.

88

11.7.1 Station Geometry

The tracker geometry is built in Geant4 on a �bre-by-�bre basis. The size of the active tracker plane
and the �bre diameter is de�ned in the mice modules. The �bre o�set and translation are determined
in code, the length of the �bres are then determined by its position within the plane. Fibre placement
is then iterated over from one end of the plane to the other �lling in all gaps within the area.

Each of the three scintillating �bre planes is built up this way. In addition to these the Monte Carlo
also includes a thin layer of mylar sandwiched between these planes. The relative position of the three
tracking planes and the three mylar layers within the station are de�ned in the mice modules.

11.7.2 MC VLPC Dark Count

When the mapper MapCppTrackerMCNoise is included in the MC each channel is tested for the presence
of an integer number of PE randomly appearing in the data. The chance of this per channel noise is
de�ned by the parameter SciFiDarkCountProbabilty within the data cards, while the number of PE
generated is given by a Poisson distribution. If a noise hit is produced it is recorded to be passed to
digitization later.

11.7.3 Building Digits

When a particle crosses a scintillating �bre in the MC it may deposits some amount of energy in passing
determined by Geant4. The digitization process takes this deposited energy and transforms it into a
number of PE as follows:

NPE = Energy × SciF iF iberConvFactor × SciF iF iberTrappingEff×
(1.0 + SciF iF iberMirrorEff)× SciF iF iberTransmissionEff×

SciF iMUXTransmissionEff ∗ SciF ivlpcQE; (11.81)

Where the value of each of these variable other than the deposited energy is given in the data cards.
Hits in the same tracker, station, and plane are collected together to form a single digit. The grouping

of digits are merged with any noise e�ects and a Gaussian smearing is applied to the total NPE to �nish
the digitization process.

89

Chapter 12

Global Track Matching

12.1 Purpose

The purpose of Track Matching is to assembly hits and tracks in the various detectors into global tracks,
(upstream, downstream, and through-going) by determining which hits belong together and creating new
tracks containing them. PID (see next section) can then be performed on the resulting tracks.

12.2 Process

Track Matching is performed in several steps. First, tracks for the upstream and downstream sections
of the beamline are assembled by matching hits and tracks from the various other detectors to tracks
produced by the trackers (if no tracker track exists, no matching is performed). Then, upstream and
downstream tracks from the event are matched together.

As particle masses and charges are required for propagation (see section 12.2.1), multiple tracks
are created for the various PID hypotheses. If the tracker can produce a charge hypothesis due to
the direction of the helical track, three tracks are created (in case of pion, muon, or electron of the
corresponding charge), otherwise six.

Note that in the default setting, the upstream and downstream tracks are only created by explicit
matching if one of the detectors has more than one hit (or track), otherwise all it is simply assumed that
the hits come from the same particle and tracks are assembled accordingly.

12.2.1 4th Order Runge-Kutta Propagation

Matching to the various detectors (see below) is generally done using a 4th order Runge-Kutta propaga-
tion routine (implemented as a wrapper for the GSL RK4 Integration). A trackpoint from the outermost
tracker station (most upstream for the upstream beamline, most downstream for the downstream beam-
line) provides the input which is then propagated backwards / forwards to the other detectors. A
maximum allowed disagreement between x and y position of propagated vs. reconstructed hits (detector
resolution plus an additional allowance for multiple scattering) is typically used as matching criterion
(see below).

Energy loss is included in the propagation and implemented as follows:
After every step, the midpoint between previous and current position is calculated and the material at

that point obtained from the geometry. This, together with PID, energy, and distance between previous
and current positions is used to calculate energy loss (or energy gain for backwards-propagation) via
the Bethe-Bloch formula. Furthermore, at every step, the distance to the nearest material boundary
is determined, and if lower than the step size, the step size is reduced signi�cantly, both to minimize
inaccuracies arising from an underestimated straight-line step distance in materials with high stopping
power (Material layers in the beamline are all relatively thin, so in such materials the nearest boundary
will always be close) and to ensure that the material during a step is uniform.

12.2.2 TOF1, TOF2, KL

For TOF1, TOF2, and the KL, the matching tolerance is a �xed value that can be con�gured for each
detector in the datacards (see section 12.4).

90

12.2.3 TOF0

The beamline optics between TOF1 and TOF0 make propagation-based matching to TOF0 unfeasible
(typical position and momentum errors in the tracker are vastly magni�ed once propagation has reached
TOF0), so a slightly di�erent method is used: First, propagation is performed to the upstream end of
TOF1. Then, based on the momentum components at this point, the travel distance from TOF0 is
estimated and used to calculate an approximate energy loss over that distance. By applying half of this
as an energy-gain to the particle on the upstream edge of TOF1, we obtain an approximate (as we do not
account for fringe-�eld e�ects from Q7-9) average energy for the travel between the TOFs. From this,
we can obtain an expected ∆t between TOF0 and TOF1, which is then compared to the reconstructed
∆t. The maximum allowed discrepancy between the two can be con�gured in the datacards.

Note that TOF0 matching can only be performed if TOF1 matching was successful.

12.2.4 Cherenkov Detectors

As the Cherenkov detectors don't have the time resolution to resolve multiple particles within a trigger
window, Cherenkov hits are added to the track without any checks.

12.2.5 EMR

Matching to the EMR (speci�cally to the most upstream trackpoint of an EMR track) works similar to
matching to TOF1, TOF2, and KL, but rather than using a �xed distance as a matching tolerance, the
tolerance is scaled by the position error reported by the EMR. A scaling coe�cient can be con�gured in
the datacards.

12.2.6 Upstream-Downstream Matching

For Upstream-Downstream matching, a cut is imposed on the maximum and minimum average βz (where
β = v

c , not the beta function) between TOF1 and TOF2. The maximum and minimum can be con�gured
in the datacards.

12.3 Usage

To use Track Matching in a MAUS module chain, simply include the mappers MapCppGlobalReconImport
(which imports all locally reconstructed data into a global event) and MapCppGlobalTrackMatching in
your mapper chain just after all local reconstruction mappers (or as the �rst mappers if you are working
with data that is already unpacked).

12.4 Con�guration

track_matching_pid_hypothesis If the PID hypotheses used for track matching should be lim-
ited to a single PID, change to either one (never several) of "kEPlus", "kEMinus", "kMuPlus",
"kMuMinus", "kPiPlus", "kPiMinus". Otherwise, leave at "all".

track_matching_tolerances Global Track Matching tolerances for the various subdetectors

TOF0t Tolerance in ns for matching to TOF0.

TOF1x, TOF1y, TOF2x, TOF2y, KLy Tolerance in mm. For the KL, only the y coordinate
is used, as the KL does not resolve the x-position.

EMRx, EMRy Multiplier for the standard tolerance for the EMR which is the reconstructed
error ×

√
12

TOF12maxSpeed, TOF12minSpeed Maximum and minimum average speed of the particle
between TOF1 and TOF2 as a fraction of c in order to match an upstream and a downstream
track.

track_matching_energy_loss Whether to use energy calculations for Global Track Matching. If
for a given run there are no �elds between TOF1 and EMR, this can be set to False for a slight
speed-up, though the TOF0 tolerance would have to be increased. Safer to leave on.

91

track_matching_no_single_event_check Whether propagation matching (for individual detec-
tors, this does not a�ect the Upstream-Downstream Matching (see section 12.2.6)) should not be
performed if each detector has no more than one hit (signi�cantly increases execution speed).

track_matching_charge_thresholds If track_matching_no_single_event is activated, this will
cause propagation matching to still occur if one of the hits has a charge deposit below the threshold
(i.e. is likely noise). NOT CURRENTLY IMPLEMENTED

track_matching_through_matching Whether upstream and downstream tracks should be assem-
bled into through tracks (contingient upon meeting a time-of-�ight cut, see above).

global_merge_kl_cell_hits Whether if multiple adjacent hits in the KL exist, these should be
merged upon import into the global datastructure.

92

Chapter 13

Global PID

13.1 Introduction

The global PID framework is designed to use sets of PID variables to 1) use MC data to create PDFs
of these variables for a range of particle hypotheses, and 2) to use the PDFs as part of a log-likelihood
method to determine the PID of reconstructed global tracks from data. The framework is designed such
that new PID variables can be added as they are developed. Section 1 of this document will explain
how to use the PID to produce PDFs, and how to perform PID on spill data contained within a Json
document. Section 2 will detail how these two actions are performed within the code, and in Section 3
the PID variables, their structure, how new ones can be added to the framework, and details of those
already in place, will be discussed. This document will be updated as the PID framework and variables
continue to be developed.

13.1.1 Using the PID scripts

13.1.2 Producing PDFs

Whilst the PID framework will eventually come with PDFs provided (for the standard MICE beam
settings) in PIDhists.root, it is possible for a user to produce PDFs for hypotheses not included within
this �le. Due to current MC availability, users currently need to produce their own PDFs. The following
describes how this should be done.

Simulation

Global

Reconstruction

PDF

Production

Figure 13.1: Steps invloved in producing a PDF from MC data

93

• Simulation: Production of MC data for a given beam setting. Ideally G4Beamline input would be
used, however input from spill generation in MAUS can be usedm but in the simulation datacards
n_particles_per_spill should be set to 1, as global track matching cannot process multiple particles
per spill until there exists an MC trigger.

• Global Track Reconstruction: The MC data should then be passed through the global track re-
construction, performed by MapCppGlobalReconImport and MapCppGlobalTrackMatching, which
import the detector information into the global event and then construct the global tracks required
for the calculation of PID variables. During the TrackMatching stage, it will have been possible
for the user to choose to produce tracks for a single pid hypothesis or for several- for the purposes
of PDF production a single hypothesis should be chosen, otherwise tracks will be duplicated. The
choice of hypothesis doesn't matter as long as the track_matching_tolerances are set to large val-
ues (i.e. 10 x larger than those in Con�gurationDefaults.py). This is permissable as long as there
is a single particle per spill in the simulation, as mentioned previously, because there will not be
extra particles to be mis-matched to, and before the PDFs are populated the MC pid of the track
is checked.

• PDF Production: To produce the PDFs from the reconstructed MC data, pid_pdf_production.py
in ${MAUS_ROOT_DIR}\bin\Global is then used. This script calls the reducer ReduceCpp-
GlobalPID. With this script, a datacard, such as that shown given in listing 13.1, that includes
the datacards required to be set by the reducer, is used by entering at the command line:

> ${MAUS_ROOT_DIR}/bin/Global/pid_pdf_generator.py \

--configuration_file pdf_example_datacard.py

This will create a directory within ${MAUS_ROOT_DIR}\�les\PID corresponding to the beam
setting and identi�er given by the datacard, which will then contain �les for each PID variable,
each of which will contain the PDF for each possible particle type. These can be combined into a
single root �le using the hadd command (see man pages for command usage).

import os

import datetime

Use the current time and date as a unique

identifier when creating files to contain PDFs.

A unique_identifier is required by the reducer ,

and PDF production will fail without one.

now = datetime.datetime.now()

unique_identifier =

now.strftime("%Y_%m_%dT%H_%M_%S_%f")

A root file containing global tracks from MC

data

input_json_file_name =

"global_track_input.root"

PID MICE configuration , 'step_4 ' for Step IV running ,

'commissioning ' for field free commissioning data

(straight tracks). Default is step_4

pid_config = "step_4"

Tag used by both MapCppGlobalPID and

ReduceCppGlobalPID , determines which PDFs to

perform PID against/which PDFs to produce (in this

case , set based upon input MC beam). A typical tag

here would be the emittance and momentum , e.g.

3-140, 6-200, etc. Alternatively , users may choose to

enter the run number they are simulating for here.

94

The tag used for the PDFs must match the tag you

use when doing PID

pid_beam_setting = "6-200"

Polarity of running mode , value can be "positive"

or "negative ".

pid_beamline_polarity = "positive"

Listing 13.1: An example datacard (pdf_example_datacard.py) for use with pid_pdf_generator.py

Performing PID with pre-existing hypotheses

To perform PID on data, the steps shown �gure 13.2 should be followed.

Data

Global

Reconstruction

Global PID

Figure 13.2: Steps invloved in performing the PID for a data sample

• Data: This can be experimental or MC data.

• Global Reconstruction: In the same way as described above for PDF generation, the data should
then be passed through the global reconstruction.

• Global PID: To perform the PID on the reconstructed data, GlobalPID.py in
${MAUS_ROOT_DIR}\bin\Global is then used. This script calls the MapCppGlobalPID map-
per. With this script, a datacard, such as that shown given in listing 13.2, that includes the input
and output root �lenames, is used, by entering the following at the command line:

> ${MAUS_ROOT_DIR}/bin/Global/GlobalPID.py \

--configuration_file example_pid_datacard.py

import os

A root document containing global tracks

input_root_file_name =

"global_recon_output.root"

Output root file with track pid info included

95

output_root_file_name =

"output_Global_PID.root"

Path to PDFs file. Users should enter the path

to their own PDFs file here

PID_PDFs_file = " "

PID MICE configuration , 'step_4 ' for StepIV running ,

'commissioning ' for field free commissioning data

(straight tracks). Default is step_4

pid_config = "step_4"

PID running mode - selects which PID variables are

used. 'online ' corresponds to less beam (momentum)

dependent variables , 'offline ' uses all variables

and requires that specific PDFs already exist for

the beam.

pid_mode = "offline"

Tag used by both MapCppGlobalPID and

ReduceCppGlobalPID , determines which PDFs to

perform PID against/which PDFs to produce (in this

case , set based upon input MC beam). A typical tag

here would be the emittance and momentum , e.g.

3-140, 6-200, etc. Alternatively , users may choose

to enter the run number they are simulating for

here. The tag used for the PDFs must match the tag

you use when doing PID

pid_beam_setting = "6-200"

Polarity of running mode , value can be "positive"

or "negative ".

pid_beamline_polarity = "positive"

PID confidence level = set the margin (in percent)

between the confidence levels of competing pid

hypotheses before they are selected as the correct

hypothesis

pid_confidence_level = 10

PID track selection - select which tracks from

TrackMatching to perform PID on. Can perform PID on

all tracks by setting to "all", on through tracks

only (constituent tracks will be PID'd, so this

excludes orphans) with "through" or on all upstream

and downstream tracks (ignoring whether tracks have

been through -matched) with "constituents"

pid_track_selection = "all"

Listing 13.2: An example datacard (example_pid_datacard.py) for use with GlobalPID.py

As the framework currently stands, the output �le would now contain the global tracks with the
PID set (where it has been possible to do so) to whichever particle hypothesis had the highest con-
�dence (if it passes the con�dence level cut), and the mapper name of the track will have been set
to MapCppGlobalPID-<pid_track_selection>, e.g. if the datacard setting was pid_track_selection =
"Through", the mapper name would be MapCppGlobalPID-Through.

96

13.2 MapCppGlobalPID and ReduceCppGlobalPID

13.2.1 MapCppGlobaPID

The steps taken in MapCppGlobalPID for a single track are shown in �gure 13.3. To express this more
fully, the data, having passed through the global reconstruction, is then passed to the PID. For each track,
the values of each PID variable are calculated. Each of these values is then compared to the corresponding
PDFs for all particle hypotheses, the number of entries in the corresponding bin providing the probability
from which the log-likelihood is calculated. For each particle hypothesis, the log-likelihoods of all of the
PID variables are summed to give a log-likelihood for that hypothesis. The PID of the track is then
obtained by comparing the log-likelihoods of the hypotheses.

Loop through PID variables

Calculate PID variable for global track

Open corresponding PDFs and find number

of entries (likelihood) for variable,

for all particle hypotheses

Calculate log-likelihood for variable

For each hypothesis, sum log-likelihoods

from PID variables

Get track from global reconstruction

Pass reconstructed track to PID

Compare summed log-likelihoods for each

hypothesis to determine PID

Figure 13.3: Flow chart detailing steps taken in MapCppGlobaPID

13.3 ReduceCppGlobalPID

The steps taken in ReduceCppGlobalPID are shown in �gure 13.4. MC data for a given particle
hypothesis, having passed through the global reconstruction, is then passed to the PID. For each track,
the values of each PID variable are calculated. A histogram is �lled with these values. If the behaviour
has been turned on in the PID variable class, then a single event is spread over all bins in the histogram,
to ensure that when the PDF is used by the PID, there will no empty bins, thus avoiding cases where
the log-likelihood takes the log of zero. The histogram is then normalised to create the PDF, which is
then written and saved to �le. If a MC track returns a variable value outside of the allowed range of the
histogram (as de�ned within the variable class) then the value for that track is not included.

97

Loop through tracks

Loop through PID variables

For PID variable, calculate

value for track

Create/open corresponding

histogram, and fill with variable value

If required, ensure non-zero bin

entries and normalise

Write to and save file

Pass globally reconstructed

MC tracks to PID

Figure 13.4: Flow chart detailing steps taken in ReduceCppGlobaPID

13.4 PID Variables

Information from the MICE detectors are incorporated into a set of PID variables that can be used to
distinguish between particle hypotheses. The Global PID framework has been written such that any
number of PID variables can be developed and added as necessary, all represented by their own class,
derived from a base class.

13.4.1 PID Base Class

The base PID class (PIDBase.hh and .cc) contains the functions to:

• Create the PDFs (and the �les that contain them)

• Use the PDFs with globally reconstructed tracks

• Populate the PDFs with variable values (after checking that value is valid)

• Perform the log-likelihood for an incoming globally reconstructed track (after checking that value
of variable for track falls within range of PDF).

• Calculate the value of the PID variable (this is a virtual function to be de�ned in the derived
classes)

There are separate base classes for single value variables (PIDBase1D) and dual value variables
(PIDBase2D).

13.4.2 PID Variable Classes

Each PID variable will be implemented in a derived class of the appropriate base PID class. Because of
how the framework is designed, new variables can be added as they are developed. There are currently
two sets of variables, those to be used when there is no �eld in the spectrometer solenoids (commissioning
variables, ComPIDVars) and those to be used during Step IV running (PIDVars).

98

ComPIDVars

PID class Variable name De�nition
ComPIDVarA di�TOF2TOF1 Uses the time of �ight between

TOF1 and TOF2. Beam depen-
dent.

ComPIDVarB KLChargeProdvsDi�TOF1TOF2 Uses the KL ADC charge prod-
uct, and the time of �ight be-
tween TOF1 and TOF2.

ComPIDVarC CommissioningKLADCChargeProduct Uses the KL ADC charge prod-
uct . Beam dependent.

ComPIDVarD CommissioningEMRrange Uses the range of the particle as
measured in the EMR. Beam de-
pendent.

ComPIDVarE CommissioningEMRrangevsDi�TOF1TOF2 Uses the range of the particle as
measured in the EMR, and the
time of �ight between TOF1 and
TOF2.

ComPIDVarF CommissioningEMRPlaneDensity Uses the plane hit density in the
EMR. Beam dependent.

ComPIDVarG CommissioningEMRPlaneDensityvsDi�TOF1TOF2 Uses the plane hit density in the
EMR, and the time of �ight be-
tween TOF1 and TOF2.

ComPIDVarH CkovAvsDi�TOF1TOF2 Uses the number of photoelec-
trons in Cherenkov A, and the
time of �ight between TOF1 and
TOF2.

ComPIDVarI CkovBvsDi�TOF1TOF2 Uses the number of photoelec-
trons in Cherenkov B, and the
time of �ight between TOF1 and
TOF2.

99

PIDVars

PID class Variable name De�nition
PIDVarA di�TOF1TOF0 Uses the upstream time of �ight, between

TOF0 and TOF1. This variable is beam de-
pendent and so is best used during o�ine data
analysis where PDFs can be produced for spe-
ci�c beam settings.

PIDVarB di�TOF0TOF1vsTrackerMom Uses upstream time of �ight, and momentum
as measured in the upstream Tracker.

PIDVarC KLChargeProdvsDSTrackerMom Uses the KL ADC charge product and the mo-
mentum measured in the downstream Tracker.

PIDVarD KLADCChargeProduct Uses the KL ADC charge product. This vari-
able is beam dependent, and so is best used
during o�ine data analysis.

PIDVarE EMRRange Uses the range of the particle as measured in
the EMR. This variable is beam dependent,
and so is best used during o�ine data analysis.

PIDVarF EMRRangevsDSTrackerMom Uses the range of the particle as measured in
the EMR, and the momentum measured in the
downstream Tracker.

PIDVarG EMRPlaneDensity Uses the plane hit density in the EMR. This
variable is beam dependent, and so is best
used during o�ine data analysis.

PIDVarH EMRPlaneDensityvsDSTrackerMom Uses the plane hit density in the EMR, and
the momentum measured in the downstream
Tracker.

PIDVarI CkovAvsUSTrackerMom Uses the number of photoelectrons in
Cherenkov A, and the momentum measured
in the upstream Tracker.

PIDVarJ CkovBvsUSTrackerMom Uses the number of photoelectrons in
Cherenkov B, and the momentum measured
in the upstream Tracker.

Adding PID Variables

In each derived variable class, the following should be included:

• The variable name should be set

• The function to calculate the PID variable should be de�ned.

• If a valid value of a variable is not returned by the function, for instance due to missing measure-
ments, then the value should be set to -1 so that it falls outside of the range of any PDFs.

• The minimum, maximum, and number of bins for PDFs created using the variable should be set.
The values of the minimum and maximum de�ne the allowed range of values that the PID variable
can take.

• In some cases it may be necessary to ensure that all bins in a PDF return non zero entries, and so
by setting the variable _nonZeroHistEntries to true, a single event spread accross all bins will be
added

Placing cuts on PIDVar value ranges

A further option for users when performing PID against the PDFs, is to cut on what range of values
within the PDFs to perform PID within. This may allow for greater purity (potentially at the expense
of e�ciency) depending on the variable. For instance, one could choose to cut harshly on the time of
�ight in PIDVarA, to reduce the chances of mis-identifying pions as muons. These cuts can be selected
through setting the appropriate pid_bounds datacards found in Con�gurationDefaults.py.

100

Chapter 14

Accessing Global Tracks

The global datastructure is set up so that the state of tracks at any point in the processing chain, import,
track matching, pid, and track �tting, can easily be accessed in order to understand where a given track
came from and what lead to its current state.

To achieve this, tracks are packaged together in PrimaryChain objects which retain copies of the
tracks at every step along the way. There will generally be one primary chain for every tracker track that
has been matched to at least one additional detector, plus possible through primary chains for tracks
that have been matched through the absorber.

14.1 The PrimaryChain Object

A primary chain (MAUS::DataStructure::Global::PrimaryChain) has a number of member functions
for accessing parameters describing the chain as well as the variety of tracks that are contained in it:

get_chain_type() A chain can hold either upstream tracks, downstream tracks, or through tracks.
The chain type is an enumerator with the following values

kNoChainType Used for initialization only

kUS A chain containing upstream tracks. This value furthermore implies that a track in the chain
has been matched into a through chain.

kDS A chain containing downstream tracks. This value furthermore implies that a track in the
chain has been matched into a through chain.

kUSOrphan A chain containing upstream tracks none of which has been matched into a through
track

kDSOrphan A chain containing downstream tracks none of which has been matched into a
through track

kThrough A chain containing through tracks. It will also reference daughter upstream and down-
stream chains

get_chain_multiplicity This is only a meaningful property for through chains. It describes whether
this and another through chain are mutually exclusive because they share daughter chains, for
example if the same upstream track has been matched to multiple downstream tracks. The possible
values of the enumerator are

kUnique This chain does not share daughter chains with any other through chains

kMultipleUS This chain shares an upstream chain with at least one other through chain

kMultipleDS This chain shares a downstream chain with at least one other through chain

kMultipleBoth This chain shares both its upstream and downstream chains with other through
chains

Note that constellations are possible where e.g. there are 3 chains, one of type kMultipleUS, one
of type kMultipleDS, and the last of type kMultipleBoth.

get_mapper_name() The name of the mapper that last modi�ed this primary chain object.

101

GetUSDaughter() For a through chain returns the upstream daughter chain.

GetDSDaughter() For a through chain returns the downstream daughter chain.

GetMatchedTracks() Returns a vector of all matched tracks for this chain. There is not a single
matched track since as described in section refsec:tmprocess, tracks for all feasible PID hypotheses
have to be created.

GetPIDTrack() Returns the PID'd track (if one exists in the chain).

GetFittedTrack() Returns the �tted track (if one exists in the chain).

Note that the global track object also holds references to constituent tracks, so there are two di�erent
ways one could obtain upstream and downstream tracks from a through primary chain. For example to
obtain PID'd tracks:

through_chain->GetPIDTrack()->GetConstituentTracks()

or

through_chain->GetUSDaughter()->GetPIDTrack()

through_chain->GetDSDaughter()->GetPIDTrack()

14.1.1 Identifying Decay Candidates

Primary chains also allow identifying events that may contain a π → µ or µ→ e decay. If an upstream
and downstream track come out of Particle ID with di�erent PIDs, no PID'd through track can be
created, so an existing through chain will return NULL from through_chain->GetPIDTrack(). In this
case, a decay candidate can be identi�ed e.g. by testing that

through_chain->GetUSDaughter()->GetPIDTrack()->get_pid()

== MAUS::DataStructure::Global::kPiPlus

and

through_chain->GetDSDaughter()->GetPIDTrack()->get_pid()

== MAUS::DataStructure::Global::kMuPlus

Additional candidates could be identi�ed from orphan chains, but caution is advised, as there is a
good chance these might be from di�erent particles rather than decays.

14.2 Tracks and Space Points from Local Reconstruction

While tracks and space points from the local reconstruction which have ended up in matched tracks can
be accessed as constituent tracks of matched tracks and as space points linked to by the track points
in matched tracks, there might be a need to access all tracks and spacepoints from local reconstruction,
including those that were not successfully matched. Since they can't be associated with a primary chain,
they can be accessed direcly from the global event via

std::vector<MAUS::DataStructure::Global::Track*> GetLRTracks()

std::vector<MAUS::DataStructure::Global::Track*>

GetLRTracks(MAUS::DataStructure::Global::DetectorPoint detector)

and

std::vector<MAUS::DataStructure::Global::SpacePoint*> GetLRSpacePoints()

std::vector<MAUS::DataStructure::Global::SpacePoint*>

GetLRSpacePoints(MAUS::DataStructure::Global::DetectorPoint detector)

where the optional argument detector allows specifying from which detectors tracks or space points
should be retrieved.

102

Chapter 15

The Envelope Tool

The MAUS envelope tool is intended as a tool to support lattice development and enable visualisation of
the MICE accelerator for online use. The tool facilitates the visualisation of �eld elements, propagation
of particles and beams ellipses through those elements.

The envelope tool is intended for use with mostly straight beamlines.

15.1 Example Usage

To call the envelope tool with some example data, source the MAUS environment and then do

$ python ${MAUS_ROOT_DIR}/bin/utilities/envelope_tool/envelope_tool.py \

--configuration_file ${MAUS_ROOT_DIR}/bin/utilities/envelope_tool/share/pseudobeamline.py

Figure 15.1: The Envelope Tool used to plot a reference trajectory through a few magnets.

103

15.2 Envelope Tool main window

The Main Window enables the user to view the selected lattice parameters, and provides buttons to
update the beam, lattice and plot parameters.

• Beam Setup: setup a beam

• Magnet Setup: setup �elds

• Plot Setup: setup the plot

• Exit: exit the GUI

15.3 Beam Setup

The Beam Setup window enables the user to set beam parameters. The top few cells set initial position,
momentum and particle type of the beam centroid, also referred to as the `reference particle' or `reference
trajectory'. The bottom few cells set beam ellipse parameters.

Helper windows can be accessed to parameterise the beam ellipse using either a Penn parameterisation
or a Twiss parameterisation.

• x, y, z: initial position of the beam particle

• px, py, pz: initial momentum of the beam particle

• pid: PDG ID of the beam particle. This is an integer; see Tab. ?? for some common particle ids.

• ellipse elements: set the elements of the beam ellipse.The matrix must be symmetric and positive
de�nite or an error will be returned when Okay is pressed.

• Twiss: setup the beam using a Twiss parameterisation - beam asymmetric in x and y with no
coupling

• Penn: setup the beam using a Penn parameterisation - beam cylindrically symmetric in x and y
with angular momentum

• Okay: click okay to return to the main window, updating the beam ellipse

• Cancel: click cancel to return to the main window, losing changes

15.4 Magnet Setup

The user can manipulate magnet parameters in this window. When the window is opened, MiceModules
which have the following required parameters are added to the window.

• FieldType (string)

• FieldName (string)

• Position (hep three vector)

• Rotation (hep three vector)

• ScaleFactor (double)

• NominalAperture (hep three vector)

• NominalOuter (hep three vector)

Other MiceModules will be ignored.
Each magnet is labelled with the magnet FieldName and a text entry is available to set the scale

factor (proportional to �eld).

• <�eld entries>: Enter a �oat to set the scale factor.

• Okay: Update the �elds in the lattice

• Cancel: Cancel changes

104

15.5 Plot Setup

The Plot Setup window enables the user to select the desired plot parameters.

• Plot Type: Select the type of variable to plot.

• Plot Variable: Select the variable to plot.

• Plot Apertures: tick to plot physical apertures. If the plot type is mean or envelope and plot
variable is x or y the apertures will be plotted as a 2D projection of the physical apertures in the
appropriate plane, with the beam reference trajectory or beam envelope superimposed. Note that
the rotations applied here are rather simplistic, assuming a 2D geometry in x or y plane (but not
both) Otherwise nominal apertures will be scaled to �t in the upper portion of the plotting window.

• Okay: Update the plot in the main window with the new selection.

• Cancel: Cancel changes

105

Chapter 16

G4beamline-MAUS Integration

This chapter describes how to run G4beamline as a third-party app with MAUS. G4beamline is used to
model the MICE beam line from the target to a point upstream of the second quad triplet (upstream of
Q4). It provides a realistic beam desciption which can be used to seed downstream simulations in MAUS.
To generate MAUS primaries with G4beamline the script simulate_mice_G4BL.py is used instead of
the usual simulate_mice.py script. The beam line settings can be controlled with the dictionary g4bl
(table 16.1) in the MAUS datacard.

The default con�guration variables simulate a 6π 200 MeV/c positive beam using a point 1 m down-
stream of D2 as the interface point. This can be used as input for the MAUS Step IV geometry provided
by the Geometry group. To generate MAUS primaries for beams of di�erent momenta or at di�erence
interfaces (i.e. for di�erent MAUS geometries) these variables must be changed accordingly.

The output of this mapper is a json document of MAUS primaries. This is passed directly to MapCpp-
Simulation and so simulatations of the entire MICE beam line from end-to-end can be run. However given
the requisite time required to complete such a simulation this is not recommended. Large scale production
jobs will be run on the Grid using this mapper to create beam libraries. These are publically available from
http://www.ppe.gla.ac.uk/~jnugent/Grid_Files/. Download the relevant beam �le which will con-
tain a list of Grid addresses for �les stored on a Grid storage element (SE). You will be required to either
run a Grid job to access these �les or pull them from the SE to your local area to work on them. For infor-
mation on working with the Grid see https://www.gridpp.ac.uk/php/support/otherscihelp.php#3.

The output json document from this mapper is called G4BLoutput.json and is written in whichever di-
rectory simulate_mice_G4BL.py was run. To run MAUS using this �le as input the script simulate_beam.py
can be used. The path to G4BLoutput.json must be set in the MAUS datacard using the variable
input_json_file_name.

106

http://www.ppe.gla.ac.uk/~jnugent/Grid_Files/
https://www.gridpp.ac.uk/php/support/otherscihelp.php#3

Table 16.1: G4BL parameters
MAUS will write the following variables to the G4BL con�guration �le

q_1, q_2, q_3, d_1, d_s, d_2 Field gradient of magnet
particles_per_spill No. of particles to take out of bu�er for each spill, if set to zero

then all particles are taken from bu�er for �rst spill
run_number When retrieving magnet currents and proton absorber thickness

from CDB set to the run number of interest
rotation_angle Rotation of MAUS co-ordinate system clockwise around the y-axis

with respect to G4BL co-ordinate system
translation_z The distance between the MAUS centre and the G4BL centre. It

assumes the G4BL centre is in front of the MAUS centre
proton_abserober_thickness Thickness of the proton absorber
proton_number No. of protons on target in G4BL
proton_weight Scales the number of protons generated, with default setting pro-

tons are NOT generated
particle_charge Refers to the charge of the simulated particles. Can be set to,

positive-only, negative-only or all
�le_path Path to G4BL input
get_magnet_currents_pa_cdb If set to True all magnet currents and proton absorber thickness

will be retrieved from the CDB and written to the G4BL con�g-
uration �le for the run number given in this dictionary

random_seed Sets the random seed for G4beamline

107

Chapter 17

Appendix C: Tracker Appendices

17.1 Kuno's Conjecture

For a given triplet space-point, the sum of the channel number of each cluster will be a constant.
To see how this comes about, consider the coordinate system de�ned by the u, v and w axes in the

station reference frame shown in �gure 17.1. The u, v and w coordinates my be written in terms of the
polar coordinates (r, φ) as follows:

u = r cos[φ] (17.1)

v = r cos
[

2π
3
− φ

]
(17.2)

w = r cos
[

4π
3
− φ

]
(17.3)

The sum u+ v + w may now be written:

u+ v + w = r

{
cosφ+ cos

[
2π
3
− φ

]
+ cos

[
4π
3
− φ

]}
(17.4)

= r

{
cosφ+

[
cos
(

2π
3

)
cosφ+ sin

(
2π
3

)
sinφ+

]
+ (17.5)[

cos
(
−2π

3

)
cosφ+ sin

(
−2π

3

)
sinφ+

]}
(17.6)

= r

{
cosφ+ 2 cos

(
2π
3

)
cosφ

}
(17.7)

= r {cosφ+ [− cosφ]} (17.8)

= 0 (17.9)

If the sum is performed using the �bre numbers for the channels hit, the sum of the the three views
will equal the sum of the central-�bre numbers, i.e. if the central �bre numbers of each of the u, v and
w doublet-layers is 106.5, then the sum of channel numbers will be 106.5 + 106.5 + 105.5 = 318.5.

17.2 Space-point variance

Figure 11.9 shows the arrangement of the �bre channels in the tracker. The regions in which a space
point will be reconstructed are shown by the shaded areas. The area of the triangular intersection is
given by:

A = 4
1
2
cp√

3
cp
2

(17.10)

=
c2p√

3
; (17.11)

108

v

u

w

Figure 17.1: Schematic representation of a point and the three plane orientations.

where cp is the channel pitch. Therefore, for the triangular intersection, the mean values of x and y are
given by:

x̄ =
1
A

∫ ∫
xdxdy (17.12)

=
1
A

∫ cp

0

xdx

∫ x√
3

− x√
3

dy (17.13)

=
1
A

2√
3

∫ cp

0

x2dx (17.14)

=
1
A

2√
3

c3p
3

(17.15)

=
√

3
c2p

2√
3

c3p
3

(17.16)

=
2
3
cp ; and (17.17)

ȳ =
1
A

∫ ∫
ydxdy (17.18)

=
1
A

∫ cp

0

dx

∫ x√
3

− x√
3

ydy (17.19)

=
1
A

∫ cp

0

[
y2

2

] x√
3

− x√
3

dx (17.20)

= 0 . (17.21)

109

The variance of the x and y coodinates are then given by:

Vx = σ2
x =

1
A

∫ ∫
(x− x̄)2dxdy (17.22)

=
1
A

∫ cp

0

dx

∫ x√
3

− x√
3

(x− x̄)2dy (17.23)

=
1
A

2√
3

∫ cp

0

x(x− x̄)2 (17.24)

=
1
A

2√
3

∫ cp

0

(x3 − 2x2x̄+ x̄2x)dx (17.25)

=
1
A

2√
3

∫ cp

0

(x3 − 4
3
cpx

2 +
4
9
c2px)dx (17.26)

=
1
A

2√
3

[
x4

4
− 4

9
cpx

3 +
2
9
c2px

2

]cp

0

(17.27)

=
c4p
A

2√
3

[
1
4
− 4

9
+

2
9

]
(17.28)

=
c4p
A

2√
3

[
1
4
− 2

9

]
(17.29)

= c4p

√
3
c2p

2√
3

1
36

(17.30)

=
1
18
c2p (17.31)

Vx = σ2
x =

(
cp

3
√

2

)2

; (17.32)

Vy = σ2
y =

1
A

∫ cp

0

dx

∫ x√
3

− x√
3

(y − ȳ)2dy (17.33)

=
1
A

∫ cp

0

[
y3

3

] x√
3

− x√
3

dy (17.34)

=
1
A

2
3
√

3

∫ cp

0

x3dx

=
1
A

2
9
√

3

[
x4

4

]cp

0

(17.35)

=
1
A

2
9
√

3

c4p
4

(17.36)

=
√

3
c2p

2
9
√

3

c4p
4

(17.37)

=
1
9
c2p
2

(17.38)

=
1
18
c2p (17.39)

Vy = σ2
y =

(
c2p

3
√

2

)2

. (17.40)

110

The covariance is given by:

Vxy =
1
A

∫ ∫
(x− x̄)(y − ȳ)dxdy (17.41)

=
1
A

∫ cp

0

(x− x̄)dx
∫ x√

3

− x√
3

(y − ȳ)dy (17.42)

=
1
A

∫ cp

0

(x− x̄)
[

1
2
y2 − yȳ

] x√
3

− x√
3

(17.43)

= 0 . (17.44)

Therefore:
σx = σy =

cp

3
√

2
= 384.4µm . (17.45)

For the hexagonal case, the area of the overlapping region (shaded zone in the right panel of �gure 11.9)
is givn by:

A = 6
1
2
cp√

3
cp
2

(17.46)

=
√

3
2
c2p . (17.47)

By symmetry, x̄ = ȳ = 0. The variance of the x and y coordinates are given by:

Vx = σ2
x = σ2

y = =
1
A

∫ ∫
(x− x̄)2dxdy (17.48)

=
1
A

∫ ∫
x2dxdy (17.49)

=
2
A

∫ 0

− cp
2

x2dx

∫ x√
3

+
cp√

3

− x√
3
− cp√

3

dy

=
2
A

∫ 0

− cp
2

x2

[
2
(
x√
3

+
cp√

3

)]
dx (17.50)

=
2
A

2√
3

∫ 0

− cp
2

(
x3 + x2cp

)
dx

=
2
A

2√
3

[
1
4
x4 +

1
3
x3cp

]0

− cp
2

(17.51)

=
2
A

2√
3

[
−1

4
c4p
16

+
1
3
c4p
8

]
(17.52)

=
2
A

2√
3

[
1
8

(
1
3
− 1

8

)
c4p

]
(17.53)

=
2
A

2√
3

1
8

5
24
c4p =

1
A

5
48
√

3
c4p (17.54)

=
2√
3c2p

5
48
√

3
c4p =

2√
3

5
48
√

3
c2p (17.55)

=

(√
5
2
cp
6

)2

. (17.56)

111

As before, the covariance is given by:

Vxy =
1
A

∫ ∫
(x− x̄)(y − ȳ)dxdy (17.57)

=
2
A

∫ 0

− cp
2

xdx

∫ x√
3

+
cp√

3

− x√
3
− cp√

3

ydy

=
2
A

∫ 0

− cp
2

xdx

[
1
2
y2

] x√
3

+
cp√

3

− x√
3
− cp√

3

= 0 . (17.58)

Therefore:

σx = σy =

√
5
2
cp
6

= 429.8µm . (17.59)

17.3 Circle parameters from three points

A circle in the plane z = 0 may be parameterised as:

(x−X0)2 + (y − Y0)2 = ρ2 ; (17.60)

where (X0, Y0) is the position of the centre of the circle and ρ is its radius. Expanding:

(x2 + y2)− 2X0x− 2Y0y = ρ2 − (X2
0 + Y 2

0) ; (17.61)

which implies:
(x2 + y2)

ρ2 − (X2
0 + Y 2

0)
− 2X0x

ρ2 − (X2
0 + Y 2

0)
− 2Y0y

ρ2 − (X2
0 + Y 2

0)
= 1 . (17.62)

The circle may be parameterised:

α(x2 + y2) + βx+ γy + κ = 0 ; (17.63)

where:

α =
1

ρ2 − (X2
0 + Y 2

0)
; (17.64)

β = −2X0α ; (17.65)

γ = −2Y0α ; (17.66)

κ = −1 . (17.67)

These equations are readily inverted to yield:

X0 =
−β
2α

; (17.68)

Y0 =
−γ
2α

; (17.69)

ρ =

√
β2 + γ2

4α2
− κ

α
. (17.70)

The equation of a circle passing through three points (xi, yi), where i = 1, 2, 3 can be found from:∣∣∣∣∣∣∣∣
x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y3
3 x3 y3 1

∣∣∣∣∣∣∣∣ = 0 ; (17.71)

which can be re-written as:

(x2 + y2)

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣− x
∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣+ y

∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ = 0 . (17.72)

112

Comparing this relation with equation 17.63:

α =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (17.73)

β = −

∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣ (17.74)

γ =

∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣ (17.75)

κ = −

∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ . (17.76)

Noting that:

(x+
β

2α
)2 + (y +

γ

2α
)2 =

(√
β2 + γ2

4α2
− κ

α

)2

. (17.77)

the position of the centre of the circle, (X0, Y0) and its radius, ρ, are given by equations 17.68 to 17.70.

17.4 Helical Track Pattern Recognition

The equation of motion of a charged particle in an external magnetic �eld can be written as

d2x

ds2
=
q

p
(
d~x

ds
)× ~B(s) (17.78)

If we assume that the magnetic �led lies along the z axis ~B = (0, 0, B) , then the three scaler components
of it can be wirttien as

d2x

ds2
=

q

P
(
dy

ds
)B

d2y

ds2
= − q

P
(
dx

ds
)B

d2z

ds2
= 0

(17.79)

we also note that P is the total momentum and the transverse momenumte pt = P cosλ = qBRH
can be written as

px = pt cosφ
px = −pt sinφ

(17.80)

the solution of the above equations will be a helix

x(s) = x1 +R

[
cos
(

Φ0 +
hs cosλ
R

)
− cos Φ0

]
y(s) = y1 +R

[
cos
(

Φ0 +
hs cosλ
R

)
− sin Φ0

]
z(s) = z1 + s sinλ

(17.81)

where x1, y1 and z1 is the starting point. R is the radius of the helix. h = ±1 is the sense of the
rotation in x− y plane. We note that

ds2 = dx2 + dy2 + dz2

ds/dz = (1 + x́2 + ý2)1/2

(
dx

ds
)2 + (

dy

ds
)2 + (

dz

ds
)2 = 1

(17.82)

113

On the other hand, the equation of a circle passing through three space points (xi, yi) , where i = 1, 2, 3
can be found from the following determinant.∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y3
3 x3 y3 1

∣∣∣∣∣∣∣∣ = 0 (17.83)

which can be re-written as

(x2 + y2)

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣− x
∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣+ y

∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ = 0 (17.84)

comparing the above relation with the conventional circle equation

a(x2 + y2) + dx+ ey + f = 0 (17.85)

or

(x+
d

2a
)2 + (y +

e

2a
)2 =

(√
d2 + e2

4a2
− f

a

)2

(17.86)

we �nd that

a =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (17.87)

d = −

∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣ (17.88)

e =

∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣ (17.89)

f = −

∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ (17.90)

and also the centre and the radius of the circle will be

x0 = − d

2a
y0 = − e

2a

R =

√
d2 + e2

4a2
− f

a

(17.91)

114

	What Who and How?
	Who Should Use MAUS
	Getting the Code and Installing MAUS
	Citing MAUS
	Running MAUS
	Run Control
	Other Applications
	Choosing the Unpacker Version

	Accessing Data
	Loading ROOT Files in Python Using PyROOT
	Loading ROOT Files in C++ Compiled Analysis Code
	Loading ROOT Files on the ROOT Command Line

	Using and Modifying the Data Structure
	Metadata
	The Spill Datastructure
	Image Datastructure
	Accessing ROOT files
	Conversion to, and Working With, JSON
	Extending the Data Structure
	Pointer Handling

	Introduction to the MAUS API
	Motivation
	Everything starts with a `Module'
	Inheritance
	Data Mangling
	Module Initialisation and Destruction
	Global Objects - Objects for Many Modules
	Global Object Initialisation

	Internal Classes
	Abstraction Layers
	C++ Python Wrapper
	Data Mangling

	Utilities
	Logging

	Running the Monte Carlo
	Beam Generation
	Beam Polarisation
	Amplitude Momentum Correlation

	Getting the Right Answer
	Geometry
	Tracking
	Energy Deposition and Showering

	GEANT4 Bindings

	Geometry
	Geometry Access Scripts
	Using the Geometry Download Executables
	A Little GDML
	Define
	Materials
	Solids
	Structure
	Additional Features and Sensitive Detectors

	Creation of New Geometries in MAUS

	How to Define a Geometry
	Configuration File
	Module Files
	Volume and Dimensions
	Properties
	Child Modules
	Module Hierarchy and GEANT4 Physical Volumes
	A Sample Configuration File
	A Sample Child Module File

	Geometry and Tracking MiceModule Properties
	General Properties
	Sensitive Detectors
	Scintillating Fibre Detector (SciFi)
	Cerenkov Detector (CKOV)
	Time Of Flight Counter (TOF)
	Special Virtual Detectors
	Virtual Detectors
	Envelope Detectors

	Unconventional Volumes
	Trapezoid Volume
	Volume Wedge
	Volume Polycone
	Volume Quadrupole
	Volume Multipole
	Volume Boolean
	Volume Sphere

	Repeating Modules
	Beam Definition and Beam Envelopes
	Optimiser

	Field Properties
	FieldType CylindricalField
	FieldType RectangularField
	FieldType Solenoid
	FieldType FieldAmalgamation
	FieldType DerivativesSolenoid
	Phasing Models
	Tracking Stability Around RF Cavities
	FieldType PillBox
	FieldType RFFieldMap
	FieldType Multipole
	FieldType CombinedFunction
	EndFieldTypes
	FieldType MagneticFieldMap

	TOF Detector
	Simulation
	Digitization

	Reconstruction
	Database

	The Trackers
	Introduction
	Overview
	Quick start guide

	Definitions
	Labelling of upstream and downstream trackers
	Station numbering
	Doublet layer
	Fibre-channel numbering

	Reference surfaces and coordinate systems
	Doublet layer
	Station
	Tracker
	Coordinate transformations

	Reconstruction Algorithms
	Hits and clusters
	Space-point reconstruction
	Pattern recognition
	Track fit

	Data structure
	Code Design
	General Code Structure
	Tracker configuration variables

	The Monte Carlo
	Station Geometry
	MC VLPC Dark Count
	Building Digits

	Global Track Matching
	Purpose
	Process
	4th Order Runge-Kutta Propagation
	TOF1, TOF2, KL
	TOF0
	Cherenkov Detectors
	EMR
	Upstream-Downstream Matching

	Usage
	Configuration

	Global PID
	Introduction
	Using the PID scripts
	Producing PDFs

	MapCppGlobalPID and ReduceCppGlobalPID
	MapCppGlobaPID

	ReduceCppGlobalPID
	PID Variables
	PID Base Class
	PID Variable Classes

	Accessing Global Tracks
	The PrimaryChain Object
	Identifying Decay Candidates

	Tracks and Space Points from Local Reconstruction

	The Envelope Tool
	Example Usage
	Envelope Tool main window
	Beam Setup
	Magnet Setup
	Plot Setup

	G4beamline-MAUS Integration
	Appendix C: Tracker Appendices
	Kuno's Conjecture
	Space-point variance
	Circle parameters from three points
	Helical Track Pattern Recognition

