# This software and supporting documentation are distributed by # Institut Federatif de Recherche 49 # CEA/NeuroSpin, Batiment 145, # 91191 Gif-sur-Yvette cedex # France # # This software is governed by the CeCILL license version 2 under # French law and abiding by the rules of distribution of free software. # You can use, modify and/or redistribute the software under the # terms of the CeCILL license version 2 as circulated by CEA, CNRS # and INRIA at the following URL "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license version 2 and that you accept its terms. from brainvisa.processes import * import registration name = 'Diffusion Maps' userLevel = 1 signature=Signature( 'dw_diffusion', ReadDiskItem( 'DW Diffusion MR', 'Aims readable volume formats' ), 'diffusion_model', ReadDiskItem( 'Diffusion Model', 'Bucket' ), 'apparent_diffusion_coefficient', WriteDiskItem( 'Apparent Diffusion Coefficient', 'Aims writable volume formats' ), 'fractional_anisotropy', WriteDiskItem( 'Fractional Anisotropy', 'Aims writable volume formats' ), 'volume_ratio', WriteDiskItem( 'Volume Ratio', 'Aims writable volume formats' ), 'standard_deviation', WriteDiskItem( 'Diffusion Standard Deviation', 'Aims writable volume formats' ), 'parallel_diffusion_coefficient', WriteDiskItem( 'Parallel Diffusion Coefficient', 'Aims writable volume formats' ), 'transverse_diffusion_coefficient', WriteDiskItem( 'Transverse Diffusion Coefficient', 'Aims writable volume formats' ), 'diffusion_weighted_t2', WriteDiskItem( 'Diffusion Weighted T2', 'Aims writable volume formats' ), 'maximum_eigenvector', WriteDiskItem( 'Maximum Eigenvector', 'GIS image' ), 'RGB_eigenvector', WriteDiskItem( 'RGB Eigenvector', 'Aims writable volume formats' ), ) def initialization( self ): self.linkParameters( 'diffusion_model', 'dw_diffusion' ) self.linkParameters( 'apparent_diffusion_coefficient', 'diffusion_model' ) self.linkParameters( 'fractional_anisotropy', 'apparent_diffusion_coefficient' ) self.linkParameters( 'volume_ratio', 'fractional_anisotropy' ) self.linkParameters( 'standard_deviation', 'volume_ratio' ) self.linkParameters( 'parallel_diffusion_coefficient', 'standard_deviation' ) self.linkParameters( 'transverse_diffusion_coefficient', 'parallel_diffusion_coefficient' ) self.linkParameters( 'diffusion_weighted_t2', 'transverse_diffusion_coefficient' ) self.linkParameters( 'maximum_eigenvector', 'diffusion_weighted_t2' ) self.linkParameters( 'RGB_eigenvector', 'diffusion_weighted_t2' ) self.setOptional( 'apparent_diffusion_coefficient', 'fractional_anisotropy', 'volume_ratio', 'standard_deviation', 'parallel_diffusion_coefficient', 'transverse_diffusion_coefficient', 'diffusion_weighted_t2', 'maximum_eigenvector', 'RGB_eigenvector' ) def execution( self, context ): x,y,z,t = self.diffusion_model.get( 'volume_dimension' ) if self.diffusion_model.type.isA("Diffusion model"): # in ( getDiskItemType( 'DTI Model' ),getDiskItemType( 'Diffusion model' ) ): command = [ 'comistScalarMap', '-verbose', '-i', self.diffusion_model, '-m' ] outputFiles = [] if self.apparent_diffusion_coefficient is not None: command.append( 'adc' ) outputFiles.append( self.apparent_diffusion_coefficient ) if self.fractional_anisotropy is not None: command.append( 'fa' ) outputFiles.append( self.fractional_anisotropy ) if self.volume_ratio is not None: command.append( 'vr' ) outputFiles.append( self.volume_ratio ) if self.standard_deviation is not None: command.append( 'stddev' ) outputFiles.append( self.standard_deviation ) if self.parallel_diffusion_coefficient is not None: command.append( 'lambdaparallel' ) outputFiles.append( self.parallel_diffusion_coefficient ) if self.transverse_diffusion_coefficient is not None: command.append( 'lambdatransverse' ) outputFiles.append( self.transverse_diffusion_coefficient ) if outputFiles: command += [ '-x', x, '-y', y, '-z', z, '-o' ] + outputFiles context.system( *command ) command = [ 'comistOrientationMap', '-verbose', '-i', self.diffusion_model, '-m' ] outputFiles = [] if self.maximum_eigenvector is not None: command.append( 'maxeigenvector' ) outputFiles.append( self.maximum_eigenvector ) if self.RGB_eigenvector is not None: command.append( 'rgb' ) outputFiles.append( self.RGB_eigenvector ) if outputFiles: command += [ '-x', x, '-y', y, '-z', z, '-o' ] + outputFiles context.system( *command ) command = [ 'comistWeightedT2', '-verbose', '-dw', self.dw_diffusion, '-o', self.diffusion_weighted_t2 ] context.system( *command ) # Set referentials of new objects trManager = registration.getTransformationManager() trManager.copyReferential( self.dw_diffusion, self.apparent_diffusion_coefficient ) trManager.copyReferential( self.dw_diffusion, self.fractional_anisotropy ) trManager.copyReferential( self.dw_diffusion, self.volume_ratio ) trManager.copyReferential( self.dw_diffusion, self.standard_deviation ) trManager.copyReferential( self.dw_diffusion, self.parallel_diffusion_coefficient ) trManager.copyReferential( self.dw_diffusion, self.transverse_diffusion_coefficient ) trManager.copyReferential( self.dw_diffusion, self.diffusion_weighted_t2 ) trManager.copyReferential( self.dw_diffusion, self.maximum_eigenvector ) trManager.copyReferential( self.dw_diffusion, self.RGB_eigenvector ) else: raise RuntimeError( _t_('Type %s is not supported') % ( self.diffusion_model.type.name ) )