# -*- coding: utf-8 -*- # This software and supporting documentation are distributed by # Institut Federatif de Recherche 49 # CEA/NeuroSpin, Batiment 145, # 91191 Gif-sur-Yvette cedex # France # # This software is governed by the CeCILL license version 2 under # French law and abiding by the rules of distribution of free software. # You can use, modify and/or redistribute the software under the # terms of the CeCILL license version 2 as circulated by CEA, CNRS # and INRIA at the following URL "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license version 2 and that you accept its terms. from brainvisa.processes import * import shutil, math, os name = 'Choose best recognition' userLevel = 2 signature = Signature( 'labelled_graphs', ListOf( ReadDiskItem( 'Labelled Cortical folds graph', 'Graph and data', requiredAttributes = { 'automatically_labelled' : 'Yes' } ) ), 'energy_plot_files', ListOf( ReadDiskItem( 'siRelax Fold Energy', 'siRelax Fold Energy' ) ), 'output_graph', WriteDiskItem( 'Labelled Cortical folds graph', 'Graph', requiredAttributes = { 'automatically_labelled' : 'Yes' } ), 'energy_plot_file', WriteDiskItem( 'siRelax Fold Energy', 'siRelax Fold Energy' ), 'stats_file', WriteDiskItem( 'Text file', 'Text file' ), ) def initialization( self ): self.setOptional( 'stats_file' ) self.linkParameters( 'output_graph', 'labelled_graphs' ) self.linkParameters( 'energy_plot_files', 'labelled_graphs' ) self.linkParameters( 'energy_plot_file', 'output_graph' ) self.linkParameters( 'stats_file', 'output_graph' ) def execution( self, context ): if len( self.energy_plot_files ) != len( self.labelled_graphs ): raise ValueError( _t_( 'There should be one energy plot file for ' \ 'each labelled graph.' ) ) energies = [] for s in self.energy_plot_files: f = open( s.fullPath() ) en = f.readlines() f.close() en = en[ len(en)-1 ].split()[2] energies.append( float( en ) ) context.write( 'energy:', en, '\n' ) context.write( '\nfinal energies:\n' ) context.write( energies ) emin = 0 M = 0 mean = 0 var = 0 if self.stats_file: statsfile = open( self.stats_file.fullPath(), 'w' ) for x in xrange( len( self.labelled_graphs ) ): mean += energies[x] var += energies[x] * energies[x] if x == 0: m = energies[x] M = energies[x] elif energies[x] < m: emin = x m = energies[x] if M < energies[x]: M = energies[x] if self.stats_file: statsfile.write( self.labelled_graphs[x].fullPath() + '\t' + str( energies[x] ) + '\n' ) mean /= len( self.labelled_graphs ) var = var / len( self.labelled_graphs ) - mean * mean if self.stats_file: statsfile.write( '\nmin:\t' + str( m ) + '\t(' + str( emin ) + ')\n' ) statsfile.write( 'max:\t' + str( M ) + '\n' ) statsfile.write( 'mean:\t' + str( mean ) + '\n' ) statsfile.write( 'stddev:\t' + str( math.sqrt( var ) ) + '\n' ) statsfile.close() context.write( 'min: ', m, ' for trial ', emin, '\n' ) context.system( 'AimsGraphConvert', '-i', self.labelled_graphs[emin], '-o', self.output_graph ) if self.energy_plot_file is not None: shutil.copy( self.energy_plot_files[emin].fullPath(), self.energy_plot_file.fullPath() )