"""Python code for building a parser from a grammar :Author: Aaron Watters :Maintainers: http://gadfly.sf.net/ :Copyright: Aaron Robert Watters, 1994 :Id: $Id: kjParseBuild.py,v 1.6 2002/05/11 02:59:04 richard Exp $: """ # BUGS: # A bad grammar that has no derivations for # the root nonterminal may cause a name error # on the variable "GoodStartingPlace" # this needs to be modified so the RULEGRAM is loaded from a # compiled representation if available. import string import kjSet import kjParser import re # import some constants from kjParser import TERMFLAG, NOMATCHFLAG, MOVETOFLAG, REDUCEFLAG, \ TRANSFLAG, KEYFLAG, NONTERMFLAG, TERMFLAG, EOFFLAG, ENDOFFILETOKEN PMODULE = kjParser.THISMODULE # errors raised here TokenError = "TokenError" # may happen on autogen with bad grammar NotSLRError = "NotSLRError" # may happen for nonSLR grammar # set this flag to abort automatic generation on Errors ABORTONERROR = 0 # token used to mark null productions NULLTOKEN = (None,None) class CFSMachine(kjParser.FSMachine): ''' a derived FSM class, with closure computation methods defined (compilable FSMachine) ''' def __init__(self, nonterm): kjParser.FSMachine.__init__(self, nonterm) def Eclosure(self, Epsilon, DoNullMaps=0): ''' return the epsilon closure of the FSM as a new FSM DoNullMap, if set, will map unexpected tokens to the "empty" state (usually creating a really big fsm) ''' Closure = CFSMachine( self.root_nonTerminal ) # compute the Epsilon Graph between states EGraph = kjSet.NewDG([]) for State in range(0,self.maxState+1): # every state is E-connected to self kjSet.AddArc( EGraph, State, State ) # add possible transition on epsilon (ONLY ONE SUPPORTED!) key = (State, Epsilon) if self.StateTokenMap.has_key(key): keymap = self.StateTokenMap[key] if keymap[0][0] != MOVETOFLAG: raise TypeError, "unexpected map type in StateTokenMap" for (Flag,ToState) in keymap: kjSet.AddArc( EGraph, State, ToState ) #endfor # transitively close EGraph kjSet.TransClose( EGraph ) # Translate EGraph into a dictionary of lists EMap = {} for State in range(0,self.maxState+1): EMap[State] = kjSet.Neighbors( EGraph, State ) # make each e-closure of each self.state a state of the closure FSM. # here closure states assumed transient -- reset elsewhere. # first do the initial state Closure.States[ Closure.initial_state ] = \ [TRANSFLAG, kjSet.NewSet(EMap[self.initial_state]) ] # do all other states (save initial and successful final states) #for State in range(0,self.maxState+1): # if State != self.initial_state \ # and State != self.successful_final_state: # Closure.NewSetState(TRANSFLAG, kjSet.NewSet(EMap[State]) ) ##endfor # compute set of all known tokens EXCEPT EPSILON Tokens = kjSet.NewSet( [] ) for (State, Token) in self.StateTokenMap.keys(): if Token != Epsilon: kjSet.addMember(Token, Tokens) # tranform it into a list Tokens = kjSet.get_elts(Tokens) # for each state of the the closure FSM (past final) add transitions # and add new states as needed until all states are processed # (uses convention that states are allocated sequentially) ThisClosureState = 1 while ThisClosureState <= Closure.maxState: MemberStates = kjSet.get_elts(Closure.States[ThisClosureState][1]) # for each possible Token, compute the union UTrans of all # e-closures for all transitions for all member states, # on the Token, make UTrans a new state (if needed), # and transition ThisClosureState to UTrans on Token for Token in Tokens: UTrans = kjSet.NewSet( [] ) for MState in MemberStates: # if MState has a transition on Token, include # EMap for the destination state key = (MState, Token) if self.StateTokenMap.has_key(key): DStateTup = self.StateTokenMap[key] if DStateTup[0][0] != MOVETOFLAG: raise TypeError, "unknown map type" for (DFlag, DState) in DStateTup: for EDState in EMap[DState]: kjSet.addMember(EDState, UTrans) #endif #endfor MState # register UTrans as a new state if needed UTState = Closure.NewSetState(TRANSFLAG, UTrans) # record transition from # ThisClosureState to UTState on Token if DoNullMaps: Closure.SetMap( ThisClosureState, Token, UTState) else: if not kjSet.Empty(UTrans): Closure.SetMap( ThisClosureState, Token, UTState) #endfor Token ThisClosureState = ThisClosureState +1 #endwhile return Closure def NewSetState(self, kind, InSet): ''' add an set-marked state to self if not present uses self.States[s][1] as the set marking the state s only used by Eclosure above ''' # return existing state if one is present that matches the set LastState= self.maxState # skip state 0 (successful final state)??? for State in range(1,LastState+1): MarkSet = self.States[State][1] if kjSet.Same(InSet,MarkSet): return State # nonlocal #endfor # if not exited then allocate a new state LastState = LastState + 1 self.States[LastState] = [ kind , InSet ] self.maxState = LastState return LastState class Ruleset: ''' Ruleset class, used to compute NFA and then DFA for parsing based on a list of rules. ''' def __init__(self, StartNonterm, Rulelist): self.StartNonterm = StartNonterm self.Rules = Rulelist def compFirst(self): ''' method to compute prefixes and First sets for nonterminals ''' # uses the special null production token NULLTOKEN # snarfed directly from Aho+Ullman (terminals glossed) First = kjSet.NewDG([]) # repeat the while loop until no change is made to First done = 0 while not done: # assume we're done until a change is made to First done = 1 # iterate through all rules looking for a new arc to add # indicating Terminal > possible first token derivation # for R in self.Rules: GoalNonterm = R.Nonterm Bodylength = len(R.Body) # look through the body of the rule up to the token with # no epsilon production (yet seen) Bodyindex = 0 Processindex = 1 while Processindex: # unless otherwise indicated below, don't go to next token Processindex = 0 # if index is past end of body then record # an epsilon production for this nonterminal if Bodyindex >= Bodylength: if not kjSet.HasArc(First, GoalNonterm, NULLTOKEN ): kjSet.AddArc( First, GoalNonterm, NULLTOKEN ) done = 0 # change made to First else: # otherwise try to add firsts of this token # to firsts of the Head of the rule. Token = R.Body[Bodyindex] (type, name) = Token if type in (KEYFLAG,TERMFLAG): # try to add this terminal to First for GoalNonterm if not kjSet.HasArc(First, GoalNonterm, Token): kjSet.AddArc( First, GoalNonterm, Token) done = 0 elif type == NONTERMFLAG: # try to add each First entry for nonterminal # to First entry for GoalNonterm for FToken in kjSet.Neighbors( First, Token ): if not kjSet.HasArc(First, GoalNonterm, FToken): kjSet.AddArc( First, GoalNonterm, FToken) done = 0 # does this nonterminal have a known e production? if kjSet.HasArc( First, Token, NULLTOKEN ): # if so, process next token in rule Processindex = 1 else: raise TokenError, "unknown token type in rule body" #endif Bodyindex = Bodyindex + 1 #endwhile Processindex #endfor R in self.Rules #endwhile not done self.First = First def compFollow(self): ''' computing the Follow set for the ruleset the good news: I think it's correct. the bad news: It's slower than it needs to be for epsilon cases. ''' Follow = kjSet.NewDG([]) # put end marker on follow of start nonterminal kjSet.AddArc(Follow, self.StartNonterm, kjParser.ENDOFFILETOKEN) # now compute other follows using the rules; # repeat the loop until no change to Follow. while not self.compFollowRules(Follow): pass self.Follow = Follow def compFollowRules(self, Follow): done = 1 # assume done unless Follow changes for R in self.Rules: newdone = self.compFollowRule(Follow, R) if not newdone: done = 0 return done def compFollowRule(self, Follow, R): done = 1 # work backwards in the rule body to # avoid retesting for epsilon nonterminals Bodylength = len(R.Body) # the tail of rule may expand to null EpsilonTail = 1 # loop starts at the last for BodyIndex in range(Bodylength-1, -1, -1): Token = R.Body[BodyIndex] (Ttype,Tname) = Token if Ttype not in (KEYFLAG, TERMFLAG, NONTERMFLAG): raise TokenError, "unknown token type in rule body" if Ttype in (KEYFLAG,TERMFLAG): # keywords etc cancel epsilon tail, otherwise ignore EpsilonTail = 0 continue # if the tail expands to epsilon, map # follow for the goal nonterminal to this token # and also follow for the tail nonterms if EpsilonTail: # add follow for goal for FToken in kjSet.Neighbors(Follow,R.Nonterm): if not kjSet.HasArc(Follow, Token, FToken): kjSet.AddArc(Follow, Token, FToken) # follow changed, loop again done = 0 # add follow for tail members #for Index2 in range(BodyIndex+1, Bodylength): # TailToken = R.Body[Index2] # for FToken in kjSet.Neighbors(Follow,TailToken): # if not kjSet.HasArc(Follow,Token,FToken): # kjSet.AddArc(Follow,Token,FToken) # done = 0 #endif EpsilonTail # if we are not at the end use First set for next token if BodyIndex != Bodylength-1: NextToken = R.Body[BodyIndex+1] (NTtype, NTname) = NextToken if NTtype in (KEYFLAG,TERMFLAG): if not kjSet.HasArc(Follow, Token, NextToken): kjSet.AddArc(Follow, Token, NextToken) done = 0 elif NTtype == NONTERMFLAG: for FToken in kjSet.Neighbors(self.First, NextToken): if FToken != NULLTOKEN: if not kjSet.HasArc(Follow, Token, FToken): kjSet.AddArc(Follow, Token, FToken) done = 0 continue # next token expands to epsilon: # add its follow, unless already done above for FToken in kjSet.Neighbors(Follow, NextToken): if not kjSet.HasArc(Follow, Token, FToken): kjSet.AddArc(Follow, Token, FToken) done = 0 else: raise TokenError, "unknown token type in rule body" # finally, check whether next iteration has epsilon tail if not kjSet.HasArc(self.First, Token, NULLTOKEN): EpsilonTail = 0 return done def DumpFirstFollow(self): First = self.First Follow = self.Follow print "First:" for key in First.keys(): name = key[1] print name," :: ", for (flag2,name2) in First[key].keys(): print name2,", ", print print "Follow:" for key in Follow.keys(): name = key[1] print name," :: ", for (flag2,name2) in Follow[key].keys(): print name2,", ", print def FirstOfTail(self, Rule, TailIndex, Token=None): ''' computing the "first" of the tail of a rule followed by an optional terminal. doesn't include NULLTOKEN requires self.First to be computed ''' Result = kjSet.NewSet( [] ) # go through all tokens in rule tail so long as there is a # null derivation for the remainder Nullprefix = 1 BodyLength = len(Rule.Body) ThisIndex = TailIndex while Nullprefix and ThisIndex < BodyLength: RToken = Rule.Body[ThisIndex] (RTtype, RTname) = RToken if RTtype == NONTERMFLAG: for FToken in kjSet.Neighbors(self.First, RToken): if FToken != NULLTOKEN: kjSet.addMember(FToken, Result) #endfor # check whether this symbol might have a null production if not kjSet.HasArc(self.First, RToken, NULLTOKEN): Nullprefix = 0 elif RTtype in [KEYFLAG, TERMFLAG]: kjSet.addMember(RToken, Result) Nullprefix = 0 else: raise TokenError, "unknown token type in rule body" ThisIndex = ThisIndex + 1 #endwhile # add the optional token if given and Nullprefix still set if Nullprefix and Token != None: kjSet.addMember(Token, Result) return Result def compSLRNFA(self): '''compute an SLR NFA for the ruleset with states for each SLR "item" and transitions, eg: X > .AB on A maps to X > A.B on epsilon maps to A > .ZC and A > .WK an item is a pair (rulenumber, bodyposition) where body position 0 is interpreted to point before the beginning of the body. SLR = "simple LR" in Aho+Ullman terminology ''' NFA = CFSMachine(self.StartNonterm) Nrules = len(self.Rules) itemStateMap = {} for Ruleindex in range(0,Nrules): Rule = self.Rules[Ruleindex] # make an item for each "dot" position in the body for DotPos in range(0, len(Rule.Body) + 1): item = (Ruleindex, DotPos) itemState = NFA.NewState(TRANSFLAG, [item]) itemStateMap[item] = itemState #endfor DotPos #endfor Ruleindex # now that the states are initialized # compute transitions except for the last item of a rule # (which has none) for Ruleindex in range(0,Nrules): Rule = self.Rules[Ruleindex] for DotPos in range(0, len(Rule.Body)): item = (Ruleindex, DotPos) CurrentToken = Rule.Body[DotPos] ThisState = itemStateMap[item] NextState = itemStateMap[ (Ruleindex, DotPos + 1) ] NFA.SetMap( ThisState, CurrentToken, NextState ) # if the current token is a nonterminal # ad epsilon transitions to first item for any # rule that derives this nonterminal (CTtype, CTname) = CurrentToken if CTtype == NONTERMFLAG: for Rule2index in range(0,Nrules): Rule2 = self.Rules[Rule2index] Head = Rule2.Nonterm if Head == CurrentToken: NextState = itemStateMap[( Rule2index, 0 )] NFA.SetMap( ThisState, NULLTOKEN, NextState ) #endfor Rule2index #endif CTtype == NONTERMFLAG #endfor DotPos #endfor Ruleindex # must handle the initial state properly here! # Make a dummy state with e-transitions to all first items # for rules that derive the initial nonterminal ThisState = NFA.initial_state GoodStartingPlace = None for Ruleindex in range(0,Nrules): Rule = self.Rules[Ruleindex] Head = Rule.Nonterm if Head == self.StartNonterm: GoodStartingPlace= (Ruleindex, 0) NextState = itemStateMap[ GoodStartingPlace ] NFA.SetMap( ThisState, NULLTOKEN, NextState ) # fix the NFA.States entry if GoodStartingPlace == None: raise NotSLRError, "No derivation for root nonterminal." NFA.States[ NFA.initial_state ] = \ [ 'transient', GoodStartingPlace ] self.SLRNFA = NFA #enddef compSLRNFA def ItemDump(self, item): ''' dump an item ''' (ruleindex, position) = item Rule = self.Rules[ruleindex] print Rule.Nonterm[1],' >> ', for bindex in range(0, len(Rule.Body)): if position == bindex: print " (*) ", print Rule.Body[bindex][1], if position == len(Rule.Body): print " (*) " else: print def SLRItemIsFinal(self, item): ''' utility function -- returns true if an item is a final item ''' (ruleindex, position) = item Rule = self.Rules[ruleindex] if position == len(Rule.Body): return 1 else: return 0 def DumpSLRNFA(self): ''' dump the NFA ''' NFA = self.SLRNFA print "root: ", NFA.root_nonTerminal for key in NFA.StateTokenMap.keys(): map = NFA.StateTokenMap[key] (fromstate, token) = key fromitem = NFA.States[ fromstate ][1] self.ItemDump(fromitem) print " on ", token[1], " maps " for Tostate in map: Toitem = NFA.States[Tostate][1] print " ", self.ItemDump(Toitem) def compDFA(self): ''' compute DFA for ruleset by computing the E-closure of the NFA ''' self.DFA = self.SLRNFA.Eclosure(NULLTOKEN) def DumpDFAsets(self): DFA = self.DFA print "root: ", DFA.root_nonTerminal for State in range(1, len(DFA.States) ): self.DumpItemSet(State) def DumpItemSet(self,State): DFA = self.DFA NFA = self.SLRNFA print print "STATE ", State, " *******" fromNFAindices = kjSet.get_elts(DFA.States[State][1]) for NFAindex in fromNFAindices: item = NFA.States[NFAindex][1] print " ", NFAindex, ": ", self.ItemDump(item) def SLRFixDFA(self): '''this function completes the computation of an SLR DFA by adding reduction states for each DFA state S containing item H > B. which reduces rule H > B for each token T in Follow of H. if S already has a transition for T then there is a conflict! assumes DFA and SLRNFA and Follow have been computed. ''' DFA = self.DFA NFA = self.SLRNFA # look through the states (except 0=success) of the DFA # initially don't add any new states, just record # actions to be done # uses convention that 0 is successful final state # ToDo is a dictionary which maps # (State, Token) to a item to reduce ToDo = {} Error = None for State in range(1, len(DFA.States) ): # look for a final item for a rule in this state fromNFAindices = kjSet.get_elts(DFA.States[State][1]) for NFAindex in fromNFAindices: item = NFA.States[NFAindex][1] # if the item is final remember to do the reductions... if self.SLRItemIsFinal(item): (ruleindex, position) = item Rule = self.Rules[ruleindex] Head = Rule.Nonterm Following = kjSet.Neighbors( self.Follow, Head ) for Token in Following: key = (State, Token) if not ToDo.has_key(key): ToDo[ key ] = item else: # it might be okay if the items are identical? item2 = ToDo[key] if item != item2: print "reduce/reduce conflict on ",key self.ItemDump(item) self.ItemDump(item2) Error = " apparent reduce/reduce conflict" #endif #endfor #endif #endfor NFAindex #endfor State # for each (State,Token) pair which indicates a reduction # record the reduction UNLESS the map is already set for the pair for key in ToDo.keys(): (State,Token) = key item = ToDo[key] (rulenum, dotpos) = item ExistingMap = DFA.map( State, Token ) if ExistingMap[0] == NOMATCHFLAG: DFA.SetReduction( State, Token, rulenum ) else: print "apparent shift/reduce conflict" print "reduction: ", key, ": " self.ItemDump(item) print "existing map ", ExistingMap Error = " apparent shift/reduce conflict" #endfor if Error and ABORTONERROR: raise NotSLRError, Error #enddef SLRfixDFA() def DoSLRGeneration(self): ''' do complete SLR DFA creation starting after initialization ''' self.compFirst() self.compFollow() self.compSLRNFA() self.compDFA() self.SLRFixDFA() ################ the following are interpretation functions ################ used by RULEGRAM meta grammar # some constants used here COMMENTFORM = "##.*\n" RSKEY = "@R" COLKEY = "::" LTKEY = ">>" IDNAME = "ident" # an identifier in the meta grammar is any nonwhite string # except the keywords @R :: >> or comment flag ## IDFORM = "[^" + string.whitespace + "]+" def IdentFun(string): ''' for identifiers simply return the string ''' return string def RootReduction(list, ObjectGram): ''' RootReduction should receive list of form [ nontermtoken, keyword COLKEY, RuleList ] ''' if len(list) != 3 or list[1] != COLKEY: raise FlowError, "unexpected metagrammar root reduction" return (list[0], list[2]) def NullRuleList(list, ObjectGram): ''' NullRuleList should receive list of form [] ''' if list != []: raise FlowError, "unexpected null RuleList form" return [] def FullRuleList(list, ObjectGram): ''' FullRuleList should receive list of form [ Rule, RuleList ] ''' if type(list) != type([]) or len(list)!=2: raise FlowError, "unexpected full RuleList form" NewRule = list[0] OldRules = list[1] return [NewRule] + OldRules def InterpRule(list, ObjectGram): ''' InterpRule should receive list of form [keyword RSKEY, RuleNameStr, keyword COLKEY, Nontermtoken, keyword LTKEY, Bodylist] ''' # check keywords: if len(list)!=6 or list[0]!=RSKEY or list[2]!=COLKEY or list[4]!=LTKEY: raise FlowError, "unexpected meta rule reduction form" ruleName = list[1] ruleNonterm = list[3] ruleBody = list[5] # upcase the the representation of keywords if needed if not ObjectGram.LexD.isCaseSensitive(): for i in range(0,len(ruleBody)): (flag, name) = ruleBody[i] if flag == KEYFLAG: ruleBody[i] = (KEYFLAG, string.upper(name)) elif not flag in (TERMFLAG, NONTERMFLAG): raise FlowError, "unexpected rule body member" rule = kjParser.ParseRule( ruleNonterm, ruleBody ) rule.Name = ruleName return rule def InterpRuleName(list, ObjectGram): ''' InterpRuleName should receive [ string ] ''' # add error checking? return list[0] def InterpNonTerm(list, ObjectGram): ''' InterpNonTerm should receive [ string ] ''' if type(list)!=type([]) or len(list)!=1: raise FlowError, "unexpected rulename form" Name = list[0] # determine whether this is a valid nonterminal if not ObjectGram.NonTermDict.has_key(Name): raise TokenError, "LHS of Rule must be nonterminal: "+Name return ObjectGram.NonTermDict[Name] def NullBody(list, ObjectGram): ''' NullBody should receive [] ''' if list != []: raise FlowError, "unexpected null Body form" return [] def FullBody(list,ObjectGram): ''' FullBody should receive [ string, Bodylist] must determine whether the string represents a keyword, a nonterminal, or a terminal of the object grammar. returns (KEYFLAG, string) (TERMFLAG, string) or (NONTERMFLAG, string) respectively ''' if type(list)!=type([]) or len(list)!=2: raise FlowError, "unexpected body form" Name = list[0] # Does the Name rep a nonterm, keyword or term # of the object grammar (in that order). if ObjectGram.NonTermDict.has_key(Name): kind = NONTERMFLAG elif ObjectGram.LexD.keywordmap.has_key(Name): kind = KEYFLAG elif ObjectGram.TermDict.has_key(Name): kind = TERMFLAG else: raise TokenError, "Rule body contains unregistered string: "+Name restOfBody = list[1] return [(kind, Name)] + restOfBody def ruleGrammar(): ''' function to generate a grammar for parsing grammar rules ''' LexD = kjParser.LexDictionary() # use SQL/Ansi style comments LexD.comment( COMMENTFORM ) # declare keywords RStart = LexD.keyword( RSKEY ) TwoColons = LexD.keyword( COLKEY ) LeadsTo = LexD.keyword( LTKEY ) # declare terminals ident = LexD.terminal(IDNAME, IDFORM, IdentFun ) # declare nonterminals Root = kjParser.nonterminal("Root") Rulelist = kjParser.nonterminal("RuleList") Rule = kjParser.nonterminal("Rule") RuleName = kjParser.nonterminal("RuleName") NonTerm = kjParser.nonterminal("NonTerm") Body = kjParser.nonterminal("Body") # declare rules # Root >> NonTerm :: Rulelist InitRule = kjParser.ParseRule( Root, \ [NonTerm, TwoColons, Rulelist], RootReduction ) # Rulelist >> RLNull = kjParser.ParseRule( Rulelist, [], NullRuleList) # Rulelist >> Rule Rulelist RLFull = kjParser.ParseRule( Rulelist, [Rule,Rulelist], FullRuleList) # Rule >> "@R :: NonTerm >> Body RuleR = kjParser.ParseRule( Rule, \ [RStart, RuleName, TwoColons, NonTerm, LeadsTo, Body],\ InterpRule) # Rulename >> ident RuleNameR = kjParser.ParseRule( RuleName, [ident], InterpRuleName) # NonTerm >> ident NonTermR = kjParser.ParseRule( NonTerm, [ident], InterpNonTerm) # Body >> BodyNull = kjParser.ParseRule( Body, [], NullBody) # Body >> ident Body BodyFull = kjParser.ParseRule( Body, [ident,Body], FullBody) # declare Rules list and Associated Name dictionary Rules = [RLNull, RLFull, RuleR, RuleNameR, NonTermR,\ BodyNull, BodyFull, InitRule] RuleDict = \ { "RLNull":0, "RLFull":1, "RuleR":2, "RuleNameR":3, \ "NonTermR":4, "BodyNull":5, "BodyFull":6 , "InitRule":7 } # make the RuleSet and compute the associate DFA RuleSet = Ruleset( Root, Rules ) RuleSet.DoSLRGeneration() # construct the Grammar object Result = kjParser.Grammar( LexD, RuleSet.DFA, Rules, RuleDict ) return Result #enddef RuleGrammar() # this is the rule grammar object for parsing RULEGRAM = ruleGrammar() class CGrammar(kjParser.Grammar): ''' a derived grammar class this is a compilable grammar for automatic parser generation. ''' def Keywords(self, Stringofkeys): ''' insert a white separated list of keywords into the LexD TODO: THIS SHOULD CHECK FOR KEYWORD/NONTERMINAL/PUNCT NAME COLLISIONS (BUT DOESN'T YET). ''' keywordlist = string.split(Stringofkeys) for keyword in keywordlist: self.LexD.keyword( keyword ) def punct(self, Stringofpuncts): ''' insert a string of punctuations into the LexD ''' for p in Stringofpuncts: self.LexD.punctuation(p) def comments(self, listOfCommentStrings): ''' register a list of regular expression strings to represent comments in LexD ''' for str in listOfCommentStrings: self.LexD.comment(str) def Nonterms(self, StringofNonterms): ''' register a white separated list of nonterminal strings ''' nonTermlist = string.split(StringofNonterms) for NonTerm in nonTermlist: self.NonTermDict[NonTerm] = kjParser.nonterminal(NonTerm) def Declarerules(self, StringWithRules): ''' initialize or add more rules to the RuleString ''' self.RuleString = self.RuleString + "\n" + StringWithRules def Compile(self, MetaGrammar=RULEGRAM): ''' The compilation function assumes NonTermDict RuleString LexD TermDict have all been set up properly (at least if the default MetaGrammar is used). On successful completion it will set up DFA RuleL RuleNameToIndex the following should return a list of rules with punctuations of self.LexD interpreted as trivial keywords keywords of seld.LexD interpreted as keywords and nonterminals registered in NonTermDict interpreted as nonterms. ParseResult should be of form ( (rootNT, RuleL), self ) ''' ParseResult = MetaGrammar.DoParse1( self.RuleString, self ) (RootNonterm, Rulelist) = ParseResult # make a ruleset and compute its DFA RuleS = Ruleset( RootNonterm, Rulelist ) RuleS.DoSLRGeneration() # make the rulename to index map to allow future bindings for i in range(0,len(Rulelist)): Rule = Rulelist[i] self.RuleNameToIndex[ Rule.Name ] = i # fill in the blanks self.DFA = RuleS.DFA self.RuleL = Rulelist # FOR DEBUG AND TESTING self.Ruleset = RuleS # DON'T clean up the grammar (misc structures are used) # in future bindings #enddef Compile def Reconstruct(self, VarName, Tofile, FName=None, indent=""): ''' Write a reconstructable representation for this grammar to a file EXCEPT: - rule associations to reduction functions will be lost (must be reset elsewhere) - terminals in the lexical dictionary will not be initialized IND is used for indentation, should be whitespace (add check!) FName if given will cause the reconstructed to be placed inside a function `FName`+"()" returning the grammar object NOTE: this function violates information hiding principles; in particular it "knows" the guts of the FSM and LexD classes ''' Reconstruction = codeReconstruct(VarName, Tofile, self, FName, indent) GrammarDumpSequence(Reconstruction) def MarshalDump(self, Tofile): ''' marshalling of a grammar to a file ''' Reconstruction = marshalReconstruct(self, Tofile) GrammarDumpSequence(Reconstruction) #endclass CGrammar def GrammarDumpSequence(ReconstructObj): ''' general procedure for different types of archiving for grammars ''' # assume an initialized Reconstruct Object with appropriate grammar etc. # put the lexical part ReconstructObj.PutLex() # put the rules ReconstructObj.PutRules() # put transitions ReconstructObj.PutTransitions() # finish up ReconstructObj.Cleanup() def NullCGrammar(): ''' function to create a "null CGrammar" ''' return CGrammar(None,None,None,{}) # utility classes class Reconstruct: ''' Grammar reconstruction objects encapsulate the process of grammar archiving. This "virtual class" is only for common behaviors of subclasses. ''' def MakeTokenArchives(self): # make a list of all tokens and # initialize token > int dictionary keys = self.Gram.DFA.StateTokenMap.keys() tokenToInt = {} tokenSet = kjSet.NewSet([]) for k in keys: kjSet.addMember(k[1], tokenSet) tokens = kjSet.get_elts(tokenSet) for i in range(0,len(tokens)): tokenToInt[ tokens[i] ] = i self.keys = keys self.tokens = tokens # global sub self.tokInt = tokenToInt # global sub class codeReconstruct(Reconstruct): ''' grammar reconstruction to a file ''' def __init__(self, VarName, Tofile, Grammar, FName=None, indent =""): # do global subs for each of these self.Var = VarName self.File = Tofile self.FName = FName self.Gram = Grammar # put the reconstruction in a function if FName is given if FName != None: Tofile.write("\n\n") Tofile.write(indent+"def "+FName+"():\n") IND = indent+" " else: IND = indent self.I = IND # global sub! Tofile.write("\n\n") Tofile.write(IND+"# ***************************BEGIN RECONSTRUCTION\n") Tofile.write(IND+"# Python declaration of Grammar variable "+VarName+".\n") Tofile.write(IND+"# automatically generated by module "+PMODULE+".\n") Tofile.write(IND+"# Altering this sequence by hand will probably\n") Tofile.write(IND+"# leave it unusable.\n") Tofile.write(IND+"#\n") Tofile.write(IND+"import "+PMODULE+"\n\n") Tofile.write(IND+"# variable declaration:\n") Tofile.write(IND+VarName+"= "+PMODULE+".NullGrammar()\n\n") # make self.keys list of dfa keys, # self.tokens list of grammar tokens, # self.tokInt inverted dictionary for self.tokens self.MakeTokenArchives() Tofile.write("\n\n"+IND+"# case sensitivity behavior for keywords.\n") if self.Gram.LexD.isCaseSensitive(): Tofile.write(IND+VarName+".SetCaseSensitivity(1)\n") else: Tofile.write(IND+VarName+".SetCaseSensitivity(0)\n") #enddef __init__ def PutLex(self): IND = self.I Tofile = self.File VarName = self.Var LexD = self.Gram.LexD tokens = self.tokens Tofile.write("\n\n"+IND+"# declaration of lexical dictionary.\n") Tofile.write(IND+"# EXCEPT FOR TERMINALS\n") Tofile.write(IND+VarName+".LexD.punctuationlist = ") Tofile.write(`LexD.punctuationlist`+"\n") Tofile.write(IND+"# now comment patterns\n") for comment in LexD.commentstrings: Tofile.write(IND+VarName+".LexD.comment("+`comment`+")\n") Tofile.write(IND+"# now define tokens\n") for i in range(0,len(tokens)): tok = tokens[i] (kind, name) = tok if kind == TERMFLAG: # put warning at end! # nonterminal not installed in lexical dictionary here! Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ") Tofile.write(PMODULE+".termrep("+`name`+")\n") elif kind == KEYFLAG: Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ") Tofile.write(VarName+".LexD.keyword("+`name`+")\n") elif kind == NONTERMFLAG: Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ") Tofile.write(PMODULE+".nonterminal("+`name`+")\n") else: raise FlowError, "unknown token type" #enddef PutLex def PutRules(self): IND = self.I VarName = self.Var Rules = self.Gram.RuleL Tofile = self.File Root = self.Gram.DFA.root_nonTerminal Tofile.write("\n\n"+IND+"# declaration of rule list with names.\n") Tofile.write(IND+"# EXCEPT FOR INTERP FUNCTIONS\n") nrules = len(Rules) Tofile.write(IND+VarName+".RuleL = [None] * "+`nrules`+"\n") for i in range(0,nrules): # put warning at end: # rule reduction function not initialized here! rule = Rules[i] name = rule.Name Tofile.write(IND+"rule = "+`rule`+"\n") Tofile.write(IND+"name = "+`name`+"\n") Tofile.write(IND+"rule.Name = name\n") Tofile.write(IND+VarName+".RuleL["+`i`+"] = rule\n") Tofile.write(IND+VarName+".RuleNameToIndex[name] = "+`i`+"\n") Tofile.write("\n\n"+IND+"# DFA root nonterminal.\n") Tofile.write(IND+VarName+".DFA.root_nonTerminal =") Tofile.write(`Root`+"\n") #enddef PutRules def PutTransitions(self): IND = self.I Tofile = self.File VarName = self.Var maxState = self.Gram.DFA.maxState tokenToInt = self.tokInt StateTokenMap = self.Gram.DFA.StateTokenMap keys = self.keys Tofile.write("\n\n"+IND+"# DFA state declarations.\n") for state in range(1, maxState+1): Tofile.write(IND+VarName+".DFA.States["+`state`+"] = ") Tofile.write('['+`TRANSFLAG`+']\n') Tofile.write(IND+VarName+".DFA.maxState = "+`maxState`+"\n") Tofile.write("\n\n"+IND+"# DFA transition declarations.\n") for key in keys: (fromState, TokenRep) = key TokenIndex = tokenToInt[TokenRep] TokenArg = VarName+".IndexToToken["+`TokenIndex`+"]" TMap = StateTokenMap[key] TMaptype = TMap[0][0] if TMaptype == REDUCEFLAG: # reduction rulenum = TMap[0][1] Args = "("+`fromState`+","+TokenArg+","+`rulenum`+")" Tofile.write(IND+VarName+".DFA.SetReduction"+Args+"\n") elif TMaptype == MOVETOFLAG: # MoveTo Args = "("+`fromState`+","+TokenArg+","+`TMap[0][1]`+")" Tofile.write(IND+VarName+".DFA.SetMap"+Args+"\n") else: raise FlowError, "unexpected else (2)" #enddef def Cleanup(self): Tofile = self.File RuleL = self.Gram.RuleL tokens = self.tokens VarName = self.Var IND = self.I FName = self.FName Tofile.write("\n\n"+IND+"# Clean up the grammar.\n") Tofile.write(IND+VarName+".CleanUp()\n") # if the Fname was given return the grammar as function result if FName != None: Tofile.write("\n\n"+IND+"# return the grammar.\n") Tofile.write(IND+"return "+VarName+"\n") Tofile.write("\n\n"+IND+"# WARNINGS ****************************** \n") Tofile.write(IND+"# You must bind the following rule names \n") Tofile.write(IND+"# to reduction interpretation functions \n") for R in RuleL: Tofile.write(IND+"# "+VarName+".Bind("+`R.Name`+", ??function??)\n") Tofile.write(IND+"#(last rule)\n") Tofile.write("\n\n"+IND+"# WARNINGS ****************************** \n") Tofile.write(IND+"# You must bind the following terminals \n") Tofile.write(IND+"# to regular expressions and interpretation functions \n") warningPrinted = 0 for tok in tokens: (kind, name) = tok if kind == TERMFLAG and tok != ENDOFFILETOKEN: Tofile.write(IND+"# "+VarName+\ ".Addterm("+`name`+", ??regularExp??, ??function??)\n") warningPrinted = 1 if not warningPrinted: Tofile.write(IND+"# ***NONE** \n") Tofile.write(IND+"#(last terminal)\n") Tofile.write(IND+"# ******************************END RECONSTRUCTION\n") #enddef #endclass class marshalReconstruct(Reconstruct): ''' Reconstruction using marshalling to a file encodes internal structures for grammar using marshal-able objects. Final marshalling to the file is done at CleanUp() storing one big list. ''' def __init__(self, Grammar, Tofile): self.Gram = Grammar self.File = Tofile # should archive self.tokens structure self.MakeTokenArchives() # archive this self.CaseSensitivity = Grammar.LexD.isCaseSensitive() def PutLex(self): LexD = self.Gram.LexD # archive these self.punct = LexD.punctuationlist self.comments = LexD.commentstrings def PutRules(self): # archive this self.Root = self.Gram.DFA.root_nonTerminal # make a list of tuples that can be used with # rule = apply(ParseRule, tuple[1]) # rule.Name = tuple[0] Rules = self.Gram.RuleL nrules = len(Rules) RuleTuples = [None] * nrules for i in range(nrules): rule = Rules[i] RuleTuples[i] = (rule.Name, rule.components()) #archive this self.RuleTups = RuleTuples def PutTransitions(self): keys = self.keys tokenToInt = self.tokInt StateTokenMap = self.Gram.DFA.StateTokenMap # archive this self.MaxStates = self.Gram.DFA.maxState # create two lists, # one for reductions with contents (fromState, tokennumber, rulenum) # one for movetos with contents (fromstate, tokennumber, tostate) # (note: token number not token itself to allow sharing) # to allow arbitrary growing, first use dicts: reductDict = {} nreducts = 0 moveToDict = {} nmoveTos = 0 for key in self.keys: (fromState, TokenRep) = key TokenIndex = tokenToInt[TokenRep] TMap = StateTokenMap[key] TMaptype = TMap[0][0] if TMaptype == REDUCEFLAG: rulenum = TMap[0][1] reductDict[nreducts] = (fromState, TokenIndex, rulenum) nreducts = nreducts + 1 elif TMaptype == MOVETOFLAG: ToState = TMap[0][1] moveToDict[nmoveTos] = (fromState, TokenIndex, ToState) nmoveTos = nmoveTos + 1 else: raise FlowError, "unexpected else" #endfor # translate dicts to lists reducts = [None] * nreducts for i in range(nreducts): reducts[i] = reductDict[i] moveTos = [None] * nmoveTos for i in range(nmoveTos): moveTos[i] = moveToDict[i] # archive these self.reducts = reducts self.moveTos = moveTos # TODO: document this new marshalling method in the docco! def Cleanup(self): ''' this is the function that does the marshalling ''' # dump the info self.File.write('tokens = %s\n'%`self.tokens`) self.File.write('punct = %s\n'%`self.punct`) self.File.write('comments = %s\n'%`self.comments`) self.File.write('RuleTups = %s\n'%`self.RuleTups`) self.File.write('MaxStates = %s\n'%`self.MaxStates`) self.File.write('reducts = %s\n'%`self.reducts`) self.File.write('moveTos = %s\n'%`self.moveTos`) self.File.write('Root = %s\n'%`self.Root`) self.File.write('CaseSensitivity = %s\n'%`self.CaseSensitivity`) # # $Log: kjParseBuild.py,v $ # Revision 1.6 2002/05/11 02:59:04 richard # Added info into module docstrings. # Fixed docco of kwParsing to reflect new grammar "marshalling". # Fixed bug in gadfly.open - most likely introduced during sql loading # re-work (though looking back at the diff from back then, I can't see how it # wasn't different before, but it musta been ;) # A buncha new unit test stuff. # # Revision 1.5 2002/05/08 00:49:00 anthonybaxter # El Grande Grande reindente! Ran reindent.py over the whole thing. # Gosh, what a lot of checkins. Tests still pass with 2.1 and 2.2. # # Revision 1.4 2002/05/07 07:06:11 richard # Cleaned up sql grammar compilation some more. # Split up the BigList into its components too. # # Revision 1.3 2002/05/07 04:03:14 richard # . major cleanup of test_gadfly # # Revision 1.2 2002/05/06 23:27:09 richard # . made the installation docco easier to find # . fixed a "select *" test - column ordering is different for py 2.2 # . some cleanup in gadfly/kjParseBuild.py # . made the test modules runnable (remembering that run_tests can take a # name argument to run a single module) # . fixed the module name in gadfly/kjParser.py # # Revision 1.1.1.1 2002/05/06 07:31:09 richard # # #