""" This module implements some special functions that commonly appear in combinatorial contexts (e.g. in power series); in particular, sequences of rational numbers such as Bernoulli and Fibonacci numbers. Factorials, binomial coefficients and related functions are located in the separate 'factorials' module. """ from sympy import Function, S, Symbol, Rational, oo, Integer, C from sympy.mpmath import bernfrac from sympy.utilities.decorator import deprecated def _product(a, b): p = 1 for k in xrange(a, b+1): p *= k return p from sympy.utilities.memoization import recurrence_memo # Dummy symbol used for computing polynomial sequences _sym = Symbol('x') #----------------------------------------------------------------------------# # # # Fibonacci numbers # # # #----------------------------------------------------------------------------# class fibonacci(Function): """ Fibonacci numbers / Fibonacci polynomials Usage ===== fibonacci(n) gives the nth Fibonacci number, F_n fibonacci(n, x) gives the nth Fibonacci polynomial in x, F_n(x) Examples ======== >>> from sympy import * >>> [fibonacci(x) for x in range(11)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fibonacci(5, Symbol('t')) 1 + 3*t**2 + t**4 Mathematical description ======================== The Fibonacci numbers are the integer sequence defined by the initial terms F_0 = 0, F_1 = 1 and the two-term recurrence relation F_n = F_{n-1} + F_{n-2}. The Fibonacci polynomials are defined by F_1(x) = 1, F_2(x) = x, and F_n(x) = x*F_{n-1}(x) + F_{n-2}(x) for n > 2. For all positive integers n, F_n(1) = F_n. References and further reading ============================== * http://en.wikipedia.org/wiki/Fibonacci_number * http://mathworld.wolfram.com/FibonacciNumber.html """ @staticmethod @recurrence_memo([0, 1]) def _fib(n, prev): return prev[-1] + prev[-2] @staticmethod @recurrence_memo([None, S.One, _sym]) def _fibpoly(n, prev): return (prev[-2] + _sym*prev[-1]).expand() @classmethod @deprecated def canonize(cls, n, sym=None): return cls.eval(n, sym) @classmethod def eval(cls, n, sym=None): if n.is_Integer: n = int(n) if n < 0: return S.NegativeOne**(n+1) * fibonacci(-n) if sym is None: return Integer(cls._fib(n)) else: if n < 1: raise ValueError("Fibonacci polynomials are defined " "only for positive integer indices.") return cls._fibpoly(n).subs(_sym, sym) class lucas(Function): """ Lucas numbers Usage ===== lucas(n) gives the nth Lucas number Examples ======== >>> from sympy import * >>> [lucas(x) for x in range(11)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] Mathematical description ======================== Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values L_0 = 2 and L_1 = 1. References and further reading ============================== * http://en.wikipedia.org/wiki/Lucas_number """ @classmethod @deprecated def canonize(cls, n): return cls.eval(n) @classmethod def eval(cls, n): if n.is_Integer: return fibonacci(n+1) + fibonacci(n-1) #----------------------------------------------------------------------------# # # # Bernoulli numbers # # # #----------------------------------------------------------------------------# class bernoulli(Function): r""" Bernoulli numbers / Bernoulli polynomials Usage ===== bernoulli(n) gives the nth Bernoulli number, B_n bernoulli(n, x) gives the nth Bernoulli polynomial in x, B_n(x) Examples ======== >>> from sympy import * >>> [bernoulli(n) for n in range(11)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> bernoulli(1000001) 0 Mathematical description ======================== The Bernoulli numbers are a sequence of rational numbers defined by B_0 = 1 and the recursive relation (n > 0) n ___ \ / n + 1 \ 0 = ) | | * B . /___ \ k / k k = 0 They are also commonly defined by their exponential generating function, which is x/(exp(x) - 1). For odd indices > 1, the Bernoulli numbers are zero. The Bernoulli polynomials statisfy the analogous formula n ___ \ / n \ n-k B (x) = ) | | * B * x . n /___ \ k / k k = 0 Bernoulli numbers and Bernoulli polynomials are related as B_n(0) = B_n. Implementation ============== We compute Bernoulli numbers using Ramanujan's formula / n + 3 \ B = (A(n) - S(n)) / | | n \ n / where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6 when n = 4 (mod 6), and [n/6] ___ \ / n + 3 \ S(n) = ) | | * B /___ \ n - 6*k / n-6*k k = 1 This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition. References and further reading ============================== * http://en.wikipedia.org/wiki/Bernoulli_number * http://en.wikipedia.org/wiki/Bernoulli_polynomial """ # Calculates B_n for positive even n @staticmethod def _calc_bernoulli(n): s = 0 a = int(C.Binomial(n+3, n-6)) for j in xrange(1, n//6+1): s += a * bernoulli(n - 6*j) # Avoid computing each binomial coefficient from scratch a *= _product(n-6 - 6*j + 1, n-6*j) a //= _product(6*j+4, 6*j+9) if n % 6 == 4: s = -Rational(n+3, 6) - s else: s = Rational(n+3, 3) - s return s / C.Binomial(n+3, n) # We implement a specialized memoization scheme to handle each # case modulo 6 separately _cache = {0: S.One, 2:Rational(1,6), 4:Rational(-1,30)} _highest = {0:0, 2:2, 4:4} @classmethod @deprecated def canonize(cls, n, sym=None): return cls.eval(n, sym) @classmethod def eval(cls, n, sym=None): if n.is_Number: if n.is_Integer and n.is_nonnegative: if n is S.Zero: return S.One elif n is S.One: if sym is None: return -S.Half else: return sym - S.Half # Bernoulli numbers elif sym is None: if n.is_odd: return S.Zero n = int(n) # Use mpmath for enormous Bernoulli numbers if n > 500: p, q = bernfrac(n) return Rational(int(p), int(q)) case = n % 6 highest_cached = cls._highest[case] if n <= highest_cached: return cls._cache[n] # To avoid excessive recursion when, say, bernoulli(1000) is # requested, calculate and cache the entire sequence ... B_988, # B_994, B_1000 in increasing order for i in xrange(highest_cached+6, n+6, 6): b = cls._calc_bernoulli(i) cls._cache[i] = b cls._highest[case] = i return b # Bernoulli polynomials else: n, result = int(n), [] for k in xrange(n + 1): result.append(C.Binomial(n, k)*cls(k)*sym**(n-k)) return C.Add(*result) else: raise ValueError("Bernoulli numbers are defined only" " for nonnegative integer indices.") #----------------------------------------------------------------------------# # # # Bell numbers # # # #----------------------------------------------------------------------------# class bell(Function): r""" Bell numbers / Bell polynomials Usage ===== bell(n) gives the nth Bell number, B_n bell(n, x) gives the nth Bell polynomial, B_n(x) Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation. Examples ======== >>> from sympy import * >>> [bell(n) for n in range(11)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] >>> bell(30) 846749014511809332450147 >>> bell(4, Symbol('t')) t + 7*t**2 + 6*t**3 + t**4 Mathematical description ======================== The Bell numbers satisfy B_0 = 1 and n-1 ___ \ / n - 1 \ B = ) | | * B . n /___ \ k / k k = 0 They are also given by oo ___ n 1 \ k B = - * ) --. n e /___ k! k = 0 The Bell polynomials are given by B_0(x) = 1 and n-1 ___ \ / n - 1 \ B (x) = x * ) | | * B (x). n /___ \ k - 1 / k-1 k = 1 References and further reading ============================== * http://en.wikipedia.org/wiki/Bell_number * http://mathworld.wolfram.com/BellNumber.html * http://mathworld.wolfram.com/BellPolynomial.html """ @staticmethod @recurrence_memo([1, 1]) def _bell(n, prev): s = 1 a = 1 for k in xrange(1, n): a = a * (n-k) // k s += a * prev[k] return s @staticmethod @recurrence_memo([S.One, _sym]) def _bell_poly(n, prev): s = 1 a = 1 for k in xrange(2, n+1): a = a * (n-k+1) // (k-1) s += a * prev[k-1] return (_sym * s).expand() @classmethod @deprecated def canonize(cls, n, sym=None): return cls.eval(n, sym) @classmethod def eval(cls, n, sym=None): if n.is_Integer and n.is_nonnegative: if sym is None: return Integer(cls._bell(int(n))) else: return cls._bell_poly(int(n)).subs(_sym, sym) #----------------------------------------------------------------------------# # # # Harmonic numbers # # # #----------------------------------------------------------------------------# class harmonic(Function): r""" Harmonic numbers Usage ===== harmonic(n) gives the nth harmonic number, H_n harmonic(n, m) gives the nth generalized harmonic number of order m, H_{n,m}, where harmonic(n) == harmonic(n, 1) Examples ======== >>> from sympy import * >>> [harmonic(n) for n in range(6)] [0, 1, 3/2, 11/6, 25/12, 137/60] >>> [harmonic(n, 2) for n in range(6)] [0, 1, 5/4, 49/36, 205/144, 5269/3600] >>> harmonic(oo, 2) pi**2/6 Mathematical description ======================== The nth harmonic number is given by 1 + 1/2 + 1/3 + ... + 1/n. More generally, n ___ \ -m H = ) k . n,m /___ k = 1 As n -> oo, H_{n,m} -> zeta(m) (the Riemann zeta function) References and further reading ============================== * http://en.wikipedia.org/wiki/Harmonic_number """ # Generate one memoized Harmonic number-generating function for each # order and store it in a dictionary _functions = {} @classmethod @deprecated def canonize(cls, n, m=None): return cls.eval(n, m) @classmethod def eval(cls, n, m=None): if m is None: m = S.One if n == oo: from sympy.functions.special.zeta_functions import zeta return zeta(m) if n.is_Integer and n.is_nonnegative and m.is_Integer: if n == 0: return S.Zero if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n))