#!/usr/bin/python #test_GA.py """ The reference D&L is "Geomertric Algebra for Physicists" by Doran and Lasenby """ import sys try: import numpy disabled = False except ImportError: #py.test will not execute any tests now disabled = True if not disabled: sys.path.append('../') from sympy.galgebra.GA import set_main, MV, make_symbols, types, ZERO, ONE, HALF, S import sympy from sympy import collect, sympify set_main(sys.modules[__name__]) def F(x): """ Conformal Mapping Function from 3D euclidian space to 5D conformal space where the images of all maps are null vectors. """ Fx = HALF*((x*x)*n+2*x-nbar) #print 'F(x) =',Fx return(Fx) def make_vector(a,n = 3): if type(a) == types.StringType: sym_str = '' for i in range(n): sym_str += a+str(i)+' ' sym_lst = make_symbols(sym_str) sym_lst.append(ZERO) sym_lst.append(ZERO) a = MV(sym_lst,'vector') return(F(a)) def test_rmul(): """ Test for communitive scalar multiplication. Leftover from when sympy and numpy were not working together and __mul__ and __rmul__ would not give the same answer. """ MV.setup('x y z') make_symbols('a b c') assert 5*x == x*5 assert HALF*x == x*HALF assert a*x == x*a def test_contraction(): """ Test for inner product and left and right contraction """ MV.setup('e_1 e_2 e_3','1 0 0, 0 1 0, 0 0 1',offset=1) assert ((e_1^e_3)|e_1) == -e_3 assert ((e_1^e_3)>e_1) == -e_3 assert (e_1|(e_1^e_3)) == e_3 assert (e_1<(e_1^e_3)) == e_3 assert ((e_1^e_3)(e_1^e_3)) == 0 def test_substitution(): MV.setup('e_x e_y e_z','1 0 0, 0 1 0, 0 0 1',offset=1) make_symbols('x y z') X = x*e_x+y*e_y+z*e_z Y = X.subs([(x,2),(y,3),(z,4)]) assert Y == 2*e_x+3*e_y+4*e_z def test_vector_extraction(): """ Show that conformal bivector encodes two points. See D&L Section 10.4.1 """ metric = ' 0 -1 #,'+ \ '-1 0 #,'+ \ ' # # #,' MV.setup('P1 P2 a',metric) """ P1 and P2 are null vectors and hence encode points in conformal space. Show that P1 and P2 can be extracted from the bivector B = P1^P2. a is a third vector in the conformal space with a.B not 0. """ ZERO_MV = MV() B = P1^P2 Bsq = B*B ap = a-(a^B)*B Ap = ap+ap*B Am = ap-ap*B Ap_test = (-2*P2dota)*P1 Am_test = (-2*P1dota)*P2 Ap.compact() Am.compact() Ap_test.compact() Am_test.compact() assert Ap == Ap_test assert Am == Am_test Ap2 = Ap*Ap Am2 = Am*Am Ap2.compact() Am2.compact() assert Ap2 == ZERO_MV assert Am2 == ZERO_MV def test_geometry(): """ Test conformal geometric description of circles, lines, spheres, and planes. """ metric = '1 0 0 0 0,'+ \ '0 1 0 0 0,'+ \ '0 0 1 0 0,'+ \ '0 0 0 0 2,'+ \ '0 0 0 2 0' MV.setup('e0 e1 e2 n nbar',metric,debug=0) e = n+nbar #conformal representation of points ZERO_MV = MV() A = make_vector(e0) # point a = (1,0,0) A = F(a) B = make_vector(e1) # point b = (0,1,0) B = F(b) C = make_vector(-1*e0) # point c = (-1,0,0) C = F(c) D = make_vector(e2) # point d = (0,0,1) D = F(d) X = make_vector('x',3) Circle = A^B^C^X Line = A^B^n^X Sphere = A^B^C^D^X Plane = A^B^n^D^X #Circle through a, b, and c Circle_test = -x2*(e0^e1^e2^n)+x2*(e0^e1^e2^nbar)+HALF*(-1+x0**2+x1**2+x2**2)*(e0^e1^n^nbar) diff = Circle-Circle_test diff.compact() assert diff == ZERO_MV #Line through a and b Line_test = -x2*(e0^e1^e2^n)+HALF*(-1+x0+x1)*(e0^e1^n^nbar)+(HALF*x2)*(e0^e2^n^nbar)+\ (-HALF*x2)*(e1^e2^n^nbar) diff = Line-Line_test diff.compact() assert diff == ZERO_MV #Sphere through a, b, c, and d Sphere_test = HALF*(1-x0**2-x1**2-x2**2)*(e0^e1^e2^n^nbar) diff = Sphere-Sphere_test diff.compact() assert diff == ZERO_MV #Plane through a, b, and d Plane_test = HALF*(1-x0-x1-x2)*(e0^e1^e2^n^nbar) diff = Plane-Plane_test diff.compact() assert diff == ZERO_MV def test_extract_plane_and_line(): """ Show that conformal trivector encodes planes and lines. See D&L section 10.4.2 """ metric = '# # # 0 0,'+ \ '# # # 0 0,'+ \ '# # # 0 0,'+ \ '0 0 0 0 2,'+ \ '0 0 0 2 0' MV.setup('p1 p2 p3 n nbar',metric,debug=0) MV.set_str_format(1) ZERO_MV = MV() P1 = F(p1) P2 = F(p2) P3 = F(p3) #Line through p1 and p2 L = P1^P2^n delta = (L|n)|nbar delta_test = 2*p1-2*p2 diff = delta-delta_test diff.compact() assert diff == ZERO_MV #Plane through p1, p2, and p3 C = P1^P2^P3 delta = ((C^n)|n)|nbar delta_test = 2*(p1^p2)-2*(p1^p3)+2*(p2^p3) diff = delta-delta_test diff.compact() assert diff == ZERO_MV def test_reciprocal_frame(): """ Test of fromula for general reciprocal frame of three vectors. Let three independent vectors be e1, e2, and e3. The reciprocal vectors E1, E2, and E3 obey the relations: e_i.E_j = delta_ij*(e1^e2^e3)**2 """ metric = '1 # #,'+ \ '# 1 #,'+ \ '# # 1,' MV.setup('e1 e2 e3',metric) E = e1^e2^e3 Esq = (E*E)() Esq_inv = 1/Esq E1 = (e2^e3)*E E2 = (-1)*(e1^e3)*E E3 = (e1^e2)*E w = (E1|e2) w.collect(MV.g) w = w().expand() w = (E1|e3) w.collect(MV.g) w = w().expand() assert w == 0 w = (E2|e1) w.collect(MV.g) w = w().expand() assert w == 0 w = (E2|e3) w.collect(MV.g) w = w().expand() assert w == 0 w = (E3|e1) w.collect(MV.g) w = w().expand() assert w == 0 w = (E3|e2) w.collect(MV.g) w = w().expand() assert w == 0 w = (E1|e1) w = w().expand() Esq = Esq.expand() assert w/Esq == 1 w = (E2|e2) w = w().expand() assert w/Esq == 1 w = (E3|e3) w = w().expand() assert w/Esq == 1 def test_derivative(): coords = make_symbols('x y z') MV.setup('e','1 0 0, 0 1 0, 0 0 1',coords=coords) X = x*e_x+y*e_y+z*e_z a = MV('a','vector') assert ((X|a).grad()) == a assert ((X*X).grad()) == 2*X assert (X*X*X).grad() == 5*X*X assert X.grad_int() == 3 def test_str(): MV.setup('e_1 e_2 e_3','1 0 0, 0 1 0, 0 0 1') X = MV('x') assert str(X) == 'x+x__0*e_1+x__1*e_2+x__2*e_3+x__01*e_1e_2+x__02*e_1e_3+x__12*e_2e_3+x__012*e_1e_2e_3' Y = MV('y','spinor') assert str(Y) == 'y+y__01*e_1e_2+y__02*e_1e_3+y__12*e_2e_3' Z = X+Y assert str(Z) == 'x+y+x__0*e_1+x__1*e_2+x__2*e_3+(x__01+y__01)*e_1e_2+(x__02+y__02)*e_1e_3+(x__12+y__12)*e_2e_3+x__012*e_1e_2e_3' assert str(e_1|e_1) == '1' def test_metric(): MV.setup('e_1 e_2 e_3','[1,1,1]') assert str(MV.metric) == '[[1 0 0]\n [0 1 0]\n [0 0 1]]' def test_constructor(): """ Test various multivector constructors """ MV.setup('e_1 e_2 e_3','[1,1,1]') make_symbols('x') assert str(S(1)) == '1' assert str(S(x)) == 'x' assert str(MV('a','scalar')) == 'a' assert str(MV('a','vector')) == 'a__0*e_1+a__1*e_2+a__2*e_3' assert str(MV('a','pseudo')) == 'a*e_1e_2e_3' assert str(MV('a','spinor')) == 'a+a__01*e_1e_2+a__02*e_1e_3+a__12*e_2e_3' assert str(MV('a')) == 'a+a__0*e_1+a__1*e_2+a__2*e_3+a__01*e_1e_2+a__02*e_1e_3+a__12*e_2e_3+a__012*e_1e_2e_3' assert str(MV([2,'a'],'grade')) == 'a__01*e_1e_2+a__02*e_1e_3+a__12*e_2e_3' assert str(MV('a','grade2')) == 'a__01*e_1e_2+a__02*e_1e_3+a__12*e_2e_3'