# needs access to libtcc and math.h # TODO: *get tcc errors (currently something like 'Unknown error 3217941984', # this makes debugging painful) # *currently the compiled function accepts too many arguments silently # *implement multi-dimensional functions for frange # *list comprehension syntax for frange? # *configuration of path to libtcc.so # *add gcc support again (easier to set up than tcc) # *fix compiler warnings # heavily inspired by http://www.cs.tut.fi/~ask/cinpy/ """ Experimental module for compiling functions to machine code. Can also be used to generate C code from SymPy expressions. Depends on libtcc. This code is experimental. It may have severe bugs. Due to the use of C, it's able to crash your Python interpreter/debugger with obscure error messages. 64 bit floats (double) are used. Overview ======== clambdify: compile a function to machine code (only useful for big functions) frange: evaluate a function on a range of numbers using machine code cexpr: translate a Python expression to a C expression genfcode: generate C code from a lambda string evanonarray: evaluate a function on an array using machine code Performance =========== Python functions using the math module are *quite* fast. For simple functions they are faster than functions compiled to machine code. So you should try whether lambdify is fast enough for you. Iterating is slow in Python (it's probably the biggest bottle neck). frange allows you to iterate using machine code. This can result in huge speedups. You might want to use NumPy: http://numpy.org/ For simple functions it's faster, but for big ones frange can be several times more efficent. You should try which solution is the best for your application. You can run the included benchmarks to see the real performance on your machine. Configuration ============= You will probably need to compile libtcc on your own. Get the sources of tcc: http://bellard.org/tcc/ Currently it only works for a recent development version. So you might want to run the following commands (you have to use your own pathes of course): $ cvs -z3 -d:pserver:anonymous@cvs.savannah.nongnu.org:/sources/tinycc co tinycc $ cd tinycc $ ./configure $ make $ gcc -shared -Wl,-soname,libtcc.so -o libtcc.so libtcc.o $ cd sympy/utilities/ $ ln -s tinycc/libtcc.so # or change libtccpath in compilef.py You might try to run libtcc_test. If something went wrong there will be bad low level Python errors probably crashing the interpreter. The error output will be printed to stdout or stderr, which might be different to your Python shell. Make sure that this module knows the path to libtcc. If everything went right, all the tests will pass. Run this file to do so and to see the results of some benchmarks. """ import os import ctypes from sympy import Symbol, cse, sympify from sympy.utilities.lambdify import lambdastr as getlambdastr try: import numpy except ImportError: numpy = None libtccpath = './libtcc.so' dps = 17 # decimal places of float precision # load libtcc TODO: better Windows support libtcc = ctypes.cdll.LoadLibrary(libtccpath) if not libtcc: raise ImportError('Could not load libtcc') def __getLeftRight(expr, index, oplength=1, stopchar='+-'): """ Gets the expressions to the left and right of an operator. >>> __getLeftRight('1/(g(x)*3.5)**(x - a**x)/(x**2 + a)', 12, ... oplength=2, stopchar='+-*/') ('(g(x)*3.5)', '(x - a**x)') """ # assumes correct syntax # TODO: never repeat yourself # get left expression left = '' openbraces = 0 for char in reversed(expr[:index]): if char == ' ': # skip whitespaces but keep them left = char + left continue elif char == ')': openbraces += 1 left = char + left elif char == '(': if not openbraces: # happens when operator is in braces break openbraces -= 1 left = char + left elif char in stopchar: if openbraces: left = char + left continue else: break else: left = char + left # get right expression right = '' openbraces = 0 for char in expr[index+oplength:]: if char == ' ': # skip whitespaces but keep them right += char continue elif char == '(': openbraces += 1 right += char elif char == ')': if not openbraces: # happens when operator is in braces break openbraces -= 1 right += char elif char in stopchar: if openbraces: right += char continue else: break else: right += char return (left, right) def cexpr(pyexpr): """ Python math expression string -> C expression string """ # TODO: better spacing # replace 'a**b' with 'pow(a, b)' while True: index = pyexpr.find('**') if index != -1: left, right = __getLeftRight(pyexpr, index, 2, '+-*/') pyexpr = pyexpr.replace(left + '**' + right, ' pow(%s, %s) ' % (left.lstrip(), right.rstrip())) else: break # TODO: convert 'x**n' to 'x*x*...*x' # TODO: avoid integer division return pyexpr def _gentmpvars(): """ Generate symbols tmp1, tmp2, ... infinitely. """ i = 0 while True: i += 1 yield Symbol('tmp' + str(i)) def genfcode(lambdastr, use_cse=False): """ Python lambda string -> C function code Optionally cse() is used to eliminate common subexpressions. """ # TODO: verify lambda string # interpret lambda string varstr, fstr = lambdastr.split(': ') varstr = varstr.lstrip('lambda ') # generate C variable string cvars = varstr.split(',') cvarstr = '' for v in cvars: cvarstr += 'double %s, ' % v cvarstr = cvarstr.rstrip(', ') # convert function string to C syntax if not use_cse: cfstr = '' finalexpr = cexpr(fstr) else: # eliminate common subexpressions subs, finalexpr = cse(sympify(fstr), _gentmpvars()) assert len(finalexpr) == 1 vardec = '' cfstr = '' for symbol, expr in subs: vardec += ' double %s;\n' % symbol.name cfstr += ' %s = %s;\n' % (symbol.name, cexpr(str(expr.evalf(dps)))) cfstr = vardec + cfstr finalexpr = cexpr(str(finalexpr[0].evalf(dps))) # generate C code code = """ inline double f(%s) { %s return %s; } """ % (cvarstr, cfstr, finalexpr) return code def __run(cmd): """ Checks the exit code of a ran command. """ if not cmd == 0: raise RuntimeError('could not run libtcc command') def _compile(code, argcount=None, fname='f', fprototype=None): """ C code with function -> compiled function Supports all standard C math functions, pi and e. Function is assumed to get and return 'double' only. Uses libtcc. """ # returned type and all arguments are double if fprototype: fprototype = ctypes.CFUNCTYPE(*fprototype) else: assert argcount, 'need argcount if no prototype is specified' fprototype = ctypes.CFUNCTYPE(*[ctypes.c_double]*(argcount+1)) # see libtcc.h for API documentation tccstate = libtcc.tcc_new() __run(libtcc.tcc_set_output_type(tccstate, 0)) # output to memory ##print libtcc.tcc_add_library_path(tccstate, mathh) # could be dropped __run(libtcc.tcc_add_library(tccstate, 'm')) # use math.h FIXME: Windows # compile string __run(libtcc.tcc_compile_string(tccstate, code)) __run(libtcc.tcc_relocate(tccstate)) # fails if link error # create C variable to get result symbol = ctypes.c_long() __run(libtcc.tcc_get_symbol(tccstate, ctypes.byref(symbol), fname)) # return reference to C function return fprototype(symbol.value) # expr needs to work with lambdastr def clambdify(args, expr, **kwargs): """ SymPy expression -> compiled function Supports all standard C math functions, pi and e. >>> from sympy import symbols, sqrt >>> x, y = symbols('xy') >>> cf = clambdify((x,y), sqrt(x*y)) >>> cf(0.5, 4) 1.4142135623730951 """ # convert function to lambda string s = getlambdastr(args, expr.evalf(21)) # generate code code = """ # include # define pi M_PI # define e M_E %s """ % genfcode(s, **kwargs) # compile code return _compile(code, len(args)) def frange(*args, **kwargs): """ frange(lambdastr, [start,] stop[, step]) -> ctypes double array Evaluates function on range using machine code. Currently only one-dimensional functions are supported. For simple functions it's somewhat slower than NumPy. For big functions it can be several times faster. lambdastr has the same restrictions as in clambdify. >>> frange('lambda x: sqrt(x)', 1, 4) # doctest: +ELLIPSIS <__main__.c_double_Array_3 object at ...> >>> for i in _: ... print i ... 1.0 1.41421356237 1.73205080757 """ if len(args) > 4: raise TypeError('expected at most 4 arguments, got %i' % len(args)) if len(args) < 2: raise TypeError('expected at least 2 argument, got %i' % len(args)) # interpret arguments lambdastr = args[0] start = 0 step = 1 if len(args) == 2: stop = args[1] elif len(args) >= 3: start = args[1] stop = args[2] if len(args) == 4: step = args[3] assert start + step != start, \ 'step is too small and would cause an infinite loop' # determine length of resulting array # TODO: do this better length = stop - start if length % step == 0: length = length/step - 1 # exclude last one else: length = length//step if step > 0: if start < stop: length += 1 # include first one else: if start > stop: length += 1 # include first one if length < 0: length = 0 assert length == int(length) length = int(length) # create array a = (ctypes.c_double * length)() # generate code vardef = 'double* MAX; double x = %f;' % start loopbody = '*result = f(x); x += %f;' % step code = """ # include # define pi M_PI # define e M_E %s void evalonrange(double *result, int n) { %s for (MAX = result + n; result < MAX; result++) { %s } } """ % (genfcode(lambdastr, **kwargs), vardef, loopbody) # compile and run evalonrange = _compile(code, fname='evalonrange', fprototype=[None, ctypes.c_void_p, ctypes.c_int]) evalonrange(ctypes.byref(a), ctypes.c_int(length)) # return ctypes array with results return a def evalonarray(lambdastr, array, length=None, **kwargs): """ Evaluates a function on an array using machine code. array can be a numpy array, a ctypes array or a pointer to an array. In the latter case, the correct length must be specified. array will be overwritten! Make a copy before to avoid this. """ # interpret arguments if hasattr(array, 'ctypes'): # numpy array pointer = array.ctypes.get_as_parameter() length = len(array) elif isinstance(array, ctypes.Array): # ctypes array pointer = ctypes.byref(array) length = len(array) elif isinstance(array, ctypes.c_void_p): # ctypes pointer FIXME pointer = array assert isinstance(length, int) and not length < 0 else: raise ValueError, 'array type not recognized' # generate code code = """ # include # define pi M_PI # define e M_E %s void evalonarray(double *array, int length) { double* MAX; for (MAX = array + length; array < MAX; array++) { *array = f(*array); } } """ % genfcode(lambdastr, **kwargs) # compile an run on array run = _compile(code, fname='evalonarray', fprototype=[None, ctypes.c_void_p, ctypes.c_int]) run(pointer, length) ######### # TESTS # ######### from sympy import sqrt, pi, lambdify from math import exp, cos, sin def test_cexpr(): expr = '1/(g(x)*3.5)**(x - a**x)/(x**2 + a)' assert cexpr(expr).replace(' ', '') == \ '1/pow((g(x)*3.5),(x-pow(a,x)))/(pow(x,2)+a)' def test_clambdify(): x = Symbol('x') y = Symbol('y') z = Symbol('z') f1 = sqrt(x*y) pf1 = lambdify((x, y), f1, 'math') cf1 = clambdify((x, y), f1) for i in xrange(10): assert cf1(i, 10 - i) == pf1(i, 10 - i) f2 = (x - y) / z * pi pf2 = lambdify((x, y, z), f2, 'math') cf2 = clambdify((x, y, z), f2) assert round(pf2(1, 2, 3), 14) == round(cf2(1, 2, 3), 14) # FIXME: slight difference in precision def test_frange(): fstr = 'lambda x: exp(x)*cos(x)**x' f = eval(fstr) a = frange(fstr, 30, 168, 3) args = range(30, 168, 3) assert len(a) == len(args) for i in xrange(len(a)): assert a[i] == f(args[i]) assert len(frange('lambda x: x', 0, -10000)) == 0 assert len(frange('lambda x: x', -1, -1, 0.0001)) == 0 a = frange('lambda x: x', -5, 5, 0.1) b = range(-50, 50) assert len(a) == len(b) for i in xrange(len(a)): assert int(round(a[i]*10)) == b[i] a = frange('lambda x: x', 17, -9, -3) b = range(17, -9, -3) assert len(a) == len(b) for i in xrange(len(a)): assert a[i] == b[i] a = frange('lambda x: x', 2.7, -3.1, -1.01) b = range(270, -310, -101) assert len(a) == len(b) for i in xrange(len(a)): assert int(round(a[i]*100)) == b[i] assert frange('lambda x: x', 0.2, 0.1, -0.1)[0] == 0.2 assert len(frange('lambda x: x', 0)) == 0 assert len(frange('lambda x: x', 1000, -1)) == 0 assert len(frange('lambda x: x', -1.23, 3.21, -0.0000001)) == 0 try: frange() assert False except TypeError: pass try: frange(1, 2, 3, 4, 5) assert False except TypeError: pass def test_evalonarray_ctypes(): a = frange('lambda x: x', 10) evalonarray('lambda x: sin(x)', a) for i, j in enumerate(a): assert sin(i) == j # TODO: test for ctypes pointers ## evalonarray('lambda x: asin(x)', ctypes.byref(a), len(a)) ## for i, j in enumerater(a): ## print j def test_evalonarray_numpy(): a = numpy.arange(10, dtype=float) evalonarray('lambda x: x + 1', a) for i, j in enumerate(a): assert float(i + 1) == j def test_use_cse(): args = ('lambda x: sqrt(x + 1)**sqrt(x + 1)', 1, 10) a = frange(*args) kwargs = {} kwargs['use_cse'] = True b = frange(*args, **kwargs) assert len(a) == len(b) for i in xrange(len(a)): assert a[i] == b[i] def benchmark(): """ Run some benchmarks for clambdify and frange. NumPy and Psyco are used as reference if available. """ from time import time from timeit import Timer def fbenchmark(f, var=[Symbol('x')]): """ Do some benchmarks with f using clambdify, lambdify and psyco. """ global cf, pf, psyf start = time() cf = clambdify(var, f) print 'compile time (including sympy overhead): %f s' % (time() - start) pf = lambdify(var, f, 'math') psyf = None try: import psyco psyf = lambdify(var, f, 'math') psyco.bind(psyf) except ImportError: pass code = '''for x in (i/1000. for i in xrange(1000)): f(%s)''' % ('x,'*len(var)).rstrip(',') t1 = Timer(code, 'from __main__ import cf as f') t2 = Timer(code, 'from __main__ import pf as f') if psyf: t3 = Timer(code, 'from __main__ import psyf as f') else: t3 = None print 'for x = (0, 1, 2, ..., 999)/1000' print '20 times in 3 runs' print 'compiled: %.4f %.4f %.4f' % tuple(t1.repeat(3, 20)) print 'Python lambda: %.4f %.4f %.4f' % tuple(t2.repeat(3, 20)) if t3: print 'Psyco lambda: %.4f %.4f %.4f' % tuple(t3.repeat(3, 20)) print 'big function:' from sympy import diff, exp, sin, cos, pi, lambdify x = Symbol('x') ## f1 = diff(exp(x)**2 - sin(x)**pi, x) \ ## * x**12-2*x**3+2*exp(x**2)-3*x**7+4*exp(123+x-x**5+2*x**4) \ ## * ((x + pi)**5).expand() f1 = 2*exp(x**2) + x**12*(-pi*sin(x)**((-1) + pi)*cos(x) + 2*exp(2*x)) \ + 4*(10*pi**3*x**2 + 10*pi**2*x**3 + 5*pi*x**4 + 5*x*pi**4 + pi**5 \ + x**5)*exp(123 + x + 2*x**4 - x**5) - 2*x**3 - 3*x**7 fbenchmark(f1) print print 'simple function:' y = Symbol('y') f2 = sqrt(x*y)+x*5 fbenchmark(f2, [x,y]) times = 100000 fstr = 'exp(sin(exp(-x**2)) + sqrt(pi)*cos(x**5/(x**3-x**2+pi*x)))' print print 'frange with f(x) =' print fstr print 'for x=1, ..., %i' % times print 'in 3 runs including full compile time' t4 = Timer("frange('lambda x: %s', 0, %i)" % (fstr, times), 'from __main__ import frange') try: import numpy except ImportError: numpy = None print 'frange: %.4f %.4f %.4f' % tuple(t4.repeat(3, 1)) if numpy: t5 = Timer('x = arange(%i); result = %s' % (times, fstr), 'from numpy import arange, sqrt, exp, sin, cos, exp, pi') print 'numpy: %.4f %.4f %.4f' % tuple(t5.repeat(3, 1)) # TODO: integration into fbenchmark if __name__ == '__main__': if __debug__: print 'Running tests...', test_cexpr() test_clambdify() test_frange() test_evalonarray_ctypes() if numpy: test_evalonarray_numpy() test_use_cse() import doctest doctest.testmod() print 'OK' print print 'Running benchmark...' benchmark()