""" PyTables NetCDF version 3 emulation API. This package provides an API is nearly identical to Scientific.IO.NetCDF (http://starship.python.net/~hinsen/ScientificPython/ScientificPythonManual/Scientific.html). Some key differences between the Scientific.IO.NetCDF API and the pytables NetCDF emulation API to keep in mind are: 1) data is stored in an HDF5 file instead of a netCDF file. 2) Although each variable can have only one unlimited dimension, it need not be the first as in a true NetCDF file. Complex data types 'F' (complex64) and 'D' (complex128) are supported in tables.netcdf3, but are not supported in netCDF (or Scientific.IO.NetCDF). Files with variables that have these datatypes, or an unlimited dimension other than the first, cannot be converted to netCDF using h5tonc. 3) variables are compressed on disk by default using HDF5 zlib compression with the 'shuffle' filter. If the 'least_significant_digit' keyword is used when a variable is created with the createVariable method, data will be truncated (quantized) before being written to the file. This can significantly improve compression. For example, if least_significant_digit=1, data will be quantized using numpy.around(scale*data)/scale, where scale = 2**bits, and bits is determined so that a precision of 0.1 is retained (in this case bits=4). From http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml: "least_significant_digit -- power of ten of the smallest decimal place in unpacked data that is a reliable value." 4) data must be appended to a variable with an unlimited dimension using the 'append' method of the netCDF variable object. In Scientific.IO.NetCDF, data can be added along an unlimited dimension by assigning it to a slice (there is no append method). The 'sync' method synchronizes the size of all variables with an unlimited dimension by filling in data using the default netCDF _FillValue, and is invoked automatically when the NetCDFFile object is closed. In the Scientific.IO.NetCDF, the 'sync' method flushes the data to disk. 5) the createVariable method has three extra optional keyword arguments not found in the Scientific.IO.NetCDF interface, 'least_significant_digit' (see item (2) above), 'expectedsize' and 'filters'. The 'expectedsize' keyword applies only to variables with an unlimited dimension, and is an estimate of the number of entries that will be added along that dimension (default 1000). This estimate is used to optimize HDF5 file access and memory usage. The 'filters' keyword is a PyTables filters instance that describes how to store the data on disk. The default corresponds to complevel=6, complib='zlib', shuffle=1 and fletcher32=0. 6) data can be saved to a real netCDF file using the NetCDFFile class method 'h5tonc' (if Scientific.IO.NetCDF is installed). The unlimited dimension must be the first (for all variables in the file) in order to use the 'h5tonc' method. Data can also be imported from a true netCDF file and saved in an HDF5 file using the 'nctoh5' class method. 7) A list of attributes corresponding to global netCDF attributes defined in the file can be obtained with the NetCDFFile ncattrs method. Similarly, netCDF variable attributes can be obtained with the NetCDFVariable ncattrs method. 8) you should not define global or variable attributes that start with '_NetCDF_', those names are reserved for internal use. 9) output similar to 'ncdump -h' can be obtained by simply printing the NetCDFFile instance. A tables.netcdf3 file consists of array objects (either EArrays or CArrays) located in the root group of a pytables hdf5 file. Each of the array objects must have a dimensions attribute, consisting of a tuple of dimension names (the length of this tuple should be the same as the rank of the array object). Any such objects with one of the supported data types in a pytables file that conforms to this simple structure can be read with the tables.netcdf3 package. Note: This package does not yet create HDF5 files that are compatible with netCDF version 4. Datasets created with the PyTables netCDF emulation API can be shared over the internet with the OPeNDAP protocol (http://opendap.org), via the python opendap module (http://opendap.oceanografia.org). A plugin for the python opendap server is included with the pytables distribution (contrib/h5_dap_plugin.py). Simply copy that file into the 'plugins' directory of the opendap python module source distribution, run 'setup.py install', point the opendap server to the directory containing your hdf5 files, and away you go. Any OPeNDAP aware client (such as Matlab or IDL) can now access your data over http as if it were a local disk file. Jeffrey Whitaker Version: 20051110 """ __version__ = '20051110' import math import numpy # need Numeric for h5 <--> netCDF conversion. try: import Numeric Numeric_imported = True except: Numeric_imported = False # need Scientific to convert to/from real netCDF files. if Numeric_imported: try: import Scientific.IO.NetCDF as RealNetCDF ScientificIONetCDF_imported = True except: ScientificIONetCDF_imported = False else: ScientificIONetCDF_imported = False import tables # dictionary that maps pytables types to single-character Numeric typecodes. _typecode_dict = {'float64':'d', 'float32':'f', 'int32':'i', 'int16':'s', 'int8':'1', 'string':'c', 'complex64':'F', 'complex128':'D', } # The reverse typecode dict _rev_typecode_dict = {} for key, value in _typecode_dict.iteritems(): _rev_typecode_dict[value] = key # dictionary that maps single character Numeric typecodes to netCDF # data types (False if no corresponding netCDF datatype exists). _netcdftype_dict = {'s':'short','1':'byte','l':'int','i':'int', 'f':'float','d':'double','c':'character','F':False,'D':False} # values to print out in __repr__ method. _reprtype_dict = {'s':'short','1':'byte','l':'int','i':'int', 'f':'float','d':'double','c':'character','F':'complex','D':'double_complex'} # _NetCDF_FillValue defaults taken netCDF 3.6.1 header file. _fillvalue_dict = {'f': 9.9692099683868690e+36, 'd': 9.9692099683868690e+36, # near 15 * 2^119 'F': 9.9692099683868690e+36+0j, # next two I made up 'D': 9.9692099683868690e+36+0j, # (no complex in netCDF) 'i': -2147483647, 'l': -2147483647, 's': -32767, '1': -127, # (signed char)-127 'c': chr(0)} # (char)0 def _quantize(data,least_significant_digit): """quantize data to improve compression. data is quantized using around(scale*data)/scale, where scale is 2**bits, and bits is determined from the least_significant_digit. For example, if least_significant_digit=1, bits will be 4.""" precision = 10.**-least_significant_digit exp = math.log(precision,10) if exp < 0: exp = int(math.floor(exp)) else: exp = int(math.ceil(exp)) bits = math.ceil(math.log(10.**-exp,2)) scale = 2.**bits return numpy.around(scale*data)/scale class NetCDFFile: """ netCDF file Constructor: NetCDFFile(filename, mode="r",history=None) Arguments: filename -- Name of hdf5 file to hold data. mode -- access mode. "r" means read-only; no data can be modified. "w" means write; a new file is created, an existing file with the same name is deleted. "a" means append (in analogy with serial files); an existing file is opened for reading and writing. history -- a string that is used to define the global NetCDF attribute 'history'. A NetCDFFile object has two standard attributes: 'dimensions' and 'variables'. The values of both are dictionaries, mapping dimension names to their associated lengths and variable names to variables, respectively. Application programs should never modify these dictionaries. A list of attributes corresponding to global netCDF attributes defined in the file can be obtained with the ncattrs method. Global file attributes are created by assigning to an attribute of the NetCDFFile object. """ def __init__(self,filename,mode='r',history=None): # open an hdf5 file. self._NetCDF_h5file = tables.openFile(filename, mode=mode) self._NetCDF_mode = mode # file already exists, set up variable and dimension dicts. if mode != 'w': self.dimensions = {} self.variables = {} for var in self._NetCDF_h5file.root: if not isinstance(var,tables.CArray) and not isinstance(var,tables.EArray): print 'object',var,'is not a EArray or CArray, skipping ..' continue if var.atom.type not in _typecode_dict.keys(): print 'object',var.name,'is not a supported datatype (',var.atom.type,'), skipping ..' continue if var.attrs.__dict__.has_key('dimensions'): n = 0 for dim in var.attrs.__dict__['dimensions']: if var.extdim >= 0 and n == var.extdim: val=None else: val=int(var.shape[n]) if not self.dimensions.has_key(dim): self.dimensions[dim] = val else: # raise an exception of a dimension of that # name has already been encountered with a # different value. if self.dimensions[dim] != val: raise KeyError,'dimension lengths not consistent' n = n + 1 else: print 'object',var.name,'does not have a dimensions attribute, skipping ..' continue self.variables[var.name]=_NetCDFVariable(var,self) if len(self.variables.keys()) == 0: raise IOError, 'file does not contain any objects compatible with tables.netcdf3' else: # initialize dimension and variable dictionaries for a new file. self.dimensions = {} self.variables = {} # set history attribute. if mode != 'r': if history != None: self.history = history def createDimension(self,dimname,size): """Creates a new dimension with the given "dimname" and "size". "size" must be a positive integer or 'None', which stands for the unlimited dimension. There can be only one unlimited dimension per dataset.""" self.dimensions[dimname] = size # make sure there is only one unlimited dimension. if self.dimensions.values().count(None) > 1: raise ValueError, 'only one unlimited dimension allowed!' def createVariable(self,varname,datatype,dimensions,least_significant_digit=None,expectedsize=1000,filters=None): """Creates a new variable with the given "varname", "datatype", and "dimensions". The "datatype" is a one-letter string with the same meaning as the typecodes for arrays in module Numeric; in practice the predefined type constants from Numeric should be used. "dimensions" must be a tuple containing dimension names (strings) that have been defined previously. The unlimited dimension must be the first (leftmost) dimension of the variable. If the optional keyword parameter 'least_significant_digit' is specified, multidimensional variables will be truncated (quantized). This can significantly improve compression. For example, if least_significant_digit=1, data will be quantized using Numeric.around(scale*data)/scale, where scale = 2**bits, and bits is determined so that a precision of 0.1 is retained (in this case bits=4). From http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml: "least_significant_digit -- power of ten of the smallest decimal place in unpacked data that is a reliable value." The 'expectedsize' keyword applies only to variables with an unlimited dimension - it is the expected number of entries that will be added along the unlimited dimension (default 1000). If think the actual number of entries will be an order of magnitude different than the default, consider providing a guess; this will optimize the HDF5 B-Tree creation, management process time, and memory usage. The 'filters' keyword also applies only to variables with an unlimited dimension, and is a PyTables filters instance that describes how to store an enlargeable array on disk. The default is tables.Filters(complevel=6, complib='zlib', shuffle=1, fletcher32=0). The return value is the NetCDFVariable object describing the new variable.""" # create NetCDFVariable instance. var = NetCDFVariable(varname,self,datatype,dimensions,least_significant_digit=least_significant_digit,expectedsize=expectedsize,filters=filters) # update shelf variable dictionary, global variable # info dict. self.variables[varname] = var return var def close(self): """Closes the file (after calling the sync method)""" self.sync() self._NetCDF_h5file.close() def sync(self): """ synchronize variables along unlimited dimension, filling in data with default netCDF _FillValue. Returns the length of the unlimited dimension. Invoked automatically when the NetCDFFile object is closed. """ # find max length of unlimited dimension. len_unlim_dims = [] hasunlimdim = False for varname,var in self.variables.iteritems(): if var.extdim >= 0: hasunlimdim = True len_unlim_dims.append(var.shape[var.extdim]) if not hasunlimdim: return 0 len_max = max(len_unlim_dims) if self._NetCDF_mode == 'r': return len_max # just returns max length of unlim dim if read-only # fill in variables that have an unlimited # dimension with _FillValue if they have fewer # entries along unlimited dimension than the max. for varname,var in self.variables.iteritems(): len_var = var.shape[var.extdim] if var.extdim >= 0 and len_var < len_max: shp = list(var.shape) shp[var.extdim]=len_max-len_var dtype = _rev_typecode_dict[var.typecode()] var._NetCDF_varobj.append( var._NetCDF_FillValue*numpy.ones(shp, dtype=dtype)) return len_max def __repr__(self): """produces output similar to 'ncdump -h'.""" info=[self._NetCDF_h5file.filename+' {\n'] info.append('dimensions:\n') n = 0 len_unlim = int(self.sync()) for key,val in self.dimensions.iteritems(): if val == None: size = len_unlim info.append(' '+key+' = UNLIMITED ; // ('+repr(size)+' currently)\n') else: info.append(' '+key+' = '+repr(val)+' ;\n') n = n + 1 info.append('variables:\n') for varname in self.variables.keys(): var = self.variables[varname] dim = var.dimensions type = _reprtype_dict[var.typecode()] info.append(' '+type+' '+varname+str(dim)+' ;\n') for key in var.ncattrs(): val = getattr(var,key) info.append(' '+varname+':'+key+' = '+repr(val)+' ;\n') info.append('// global attributes:\n') for key in self.ncattrs(): val = getattr(self,key) info.append(' :'+key+' = '+repr(val)+' ;\n') info.append('}') return ''.join(info) def __setattr__(self,name,value): # if name = 'dimensions', 'variables', or begins with # '_NetCDF_', it is a temporary at the python level # (not stored in the hdf5 file). if not name.startswith('_') and name not in ['dimensions','variables']: setattr(self._NetCDF_h5file.root._v_attrs,name,value) elif not name.endswith('__'): self.__dict__[name]=value def __getattr__(self,name): if name.startswith('__') and name.endswith('__'): raise AttributeError elif name.startswith('_NetCDF_') or name in ['dimensions','variables']: return self.__dict__[name] else: if self.__dict__.has_key(name): return self.__dict__[name] else: return self._NetCDF_h5file.root._v_attrs.__dict__[name] def ncattrs(self): """return attributes corresponding to netCDF file attributes""" return [attr for attr in self._NetCDF_h5file.root._v_attrs._v_attrnamesuser] def h5tonc(self,filename,packshort=False,scale_factor=None,add_offset=None): """convert to a true netcdf file (filename). Requires Scientific.IO.NetCDF module. If packshort=True, variables are packed as short integers using the dictionaries scale_factor and add_offset. The dictionary keys are the the variable names in the hdf5 file to be packed as short integers. Each variable's unlimited dimension must be the slowest varying (the first dimension for C/Python, the last for Fortran).""" if not ScientificIONetCDF_imported or not Numeric_imported: print 'Scientific.IO.NetCDF and Numeric must be installed to convert to NetCDF' return ncfile = RealNetCDF.NetCDFFile(filename,'w') # create dimensions. for dimname,size in self.dimensions.iteritems(): ncfile.createDimension(dimname,size) # create global attributes. for key in self.ncattrs(): setattr(ncfile,key,getattr(self,key)) # create variables. for varname,varin in self.variables.iteritems(): packvar = False dims = varin.dimensions dimsizes = [self.dimensions[dim] for dim in dims] if None in dimsizes: if dimsizes.index(None) != 0: raise ValueError,'unlimited or enlargeable dimension must be most significant (slowest changing, or first) one in order to convert to a true netCDF file' if packshort and scale_factor.has_key(varname) and add_offset.has_key(varname): print 'packing %s as short integers ...'%(varname) datatype = 's' packvar = True else: datatype = varin.typecode() if not _netcdftype_dict[datatype]: raise ValueError,'datatype not supported in netCDF, cannot convert to a true netCDF file' varout = ncfile.createVariable(varname,datatype,dims) for key in varin.ncattrs(): setattr(varout,key,getattr(varin,key)) if packvar: setattr(varout,'scale_factor',scale_factor[varname]) setattr(varout,'add_offset',add_offset[varname]) for n in range(varin.shape[0]): if packvar: varout[n] = ((1./scale_factor[varname])*(varin[n] - add_offset[varname])).astype('s') else: if datatype == 'c': tmp = Numeric.array(varin[n].flatten(),'c') varout[n] = Numeric.reshape(tmp, varin.shape[1:]) else: varout[n] = varin[n] # close file. ncfile.close() def nctoh5(self,filename,unpackshort=True,filters=None): """convert a true netcdf file (filename) to a hdf5 file compatible with this package. Requires Scientific.IO.NetCDF module. If unpackshort=True, variables stored as short integers with a scale and offset are unpacked to Float32 variables in the hdf5 file. If the least_significant_digit attribute is set, the data is quantized to improve compression. Use the filters keyword to change the default tables.Filters instance used for compression (see the createVariable docstring for details).""" if not ScientificIONetCDF_imported or not Numeric_imported: print 'Scientific.IO.NetCDF and Numeric must be installed to convert from NetCDF' return ncfile = RealNetCDF.NetCDFFile(filename,'r') # create dimensions. hasunlimdim = False for dimname,size in ncfile.dimensions.iteritems(): self.createDimension(dimname,size) if size == None: hasunlimdim = True unlimdim = dimname # create variables. for varname,ncvar in ncfile.variables.iteritems(): if hasattr(ncvar,'least_significant_digit'): lsd = ncvar.least_significant_digit else: lsd = None if unpackshort and hasattr(ncvar,'scale_factor') and hasattr(ncvar,'add_offset'): dounpackshort = True datatype = 'f' else: dounpackshort = False datatype = ncvar.typecode() var = self.createVariable(varname,datatype,ncvar.dimensions,least_significant_digit=lsd,filters=filters) for key,val in ncvar.__dict__.iteritems(): if dounpackshort and key in ['add_offset','scale_factor']: continue if dounpackshort and key == 'missing_value': val=1.e30 # convert rank-0 Numeric array.to python float/int/string if isinstance(val,type(Numeric.array([1]))) and len(val)==1: val = val[0] setattr(var,key,val) # fill variables with data. nobjects = 0; nbytes = 0 # Initialize counters for varname,ncvar in ncfile.variables.iteritems(): var = self.variables[varname] extdim = var._NetCDF_varobj.extdim if extdim >= 0: hasunlimdim = True else: hasunlimdim = False if unpackshort and hasattr(ncvar,'scale_factor') and hasattr(ncvar,'add_offset'): dounpackshort = True else: dounpackshort = False if hasunlimdim: # write data to enlargeable array one chunk of records at a # time (so the whole array doesn't have to be kept in memory). nrowsinbuf = var._NetCDF_varobj.nrowsinbuf # The slices parameter for var.__getitem__() slices = [slice(0, dim, 1) for dim in ncvar.shape] # range to copy start = 0; stop = ncvar.shape[extdim]; step = nrowsinbuf if step < 1: step = 1 # Start the copy itself for start2 in range(start, stop, step): # Save the records on disk stop2 = start2+step if stop2 > stop: stop2 = stop # Set the proper slice in the extensible dimension slices[extdim] = slice(start2, stop2, 1) idata = ncvar[tuple(slices)] if dounpackshort: tmpdata = (ncvar.scale_factor*idata+ncvar.add_offset).astype('f') else: tmpdata = idata if hasattr(ncvar,'missing_value'): tmpdata = Numeric.where(idata >= ncvar.missing_value, 1.e30, tmpdata) var.append(tmpdata) else: idata = ncvar[:] if dounpackshort: tmpdata = (ncvar.scale_factor*idata+ncvar.add_offset).astype('f') else: tmpdata = idata if hasattr(ncvar,'missing_value'): tmpdata = Numeric.where(idata >= ncvar.missing_value, 1.e30, tmpdata) if ncvar.typecode() == 'c': # numpy string arrays with itemsize=1 used for netCDF char arrays. var[:] = numpy.array(tmpdata.tolist(), dtype="S1") else: var[:] = tmpdata # Increment the counters nobjects += 1 nbytes += reduce(lambda x,y:x*y, var._NetCDF_varobj.shape) * var._NetCDF_varobj.atom.itemsize # create global attributes. for key,val in ncfile.__dict__.iteritems(): # convert Numeric rank-0 array to a python float/int/string if isinstance(val,type(Numeric.array([1]))) and len(val)==1: val = val[0] # if attribute is a Numeric array, convert to python list. if isinstance(val,type(Numeric.array([1]))) and len(val)>1: val = val.tolist() setattr(self,key,val) # close file. ncfile.close() self.sync() return nobjects, nbytes class NetCDFVariable: """Variable in a netCDF file NetCDFVariable objects are constructed by calling the method 'createVariable' on the NetCDFFile object. NetCDFVariable objects behave much like array objects defined in module Numeric, except that their data resides in a file. Data is read by indexing and written by assigning to an indexed subset; the entire array can be accessed by the index '[:]'. Variables with an unlimited dimension are can be compressed on disk (by default, zlib compression (level=6) and the HDF5 'shuffle' filter are used). The default can be changed by passing a tables.Filters instance to createVariable via the filters keyword argument. Truncating the data to a precision specified by the least_significant_digit optional keyword argument to createVariable will signficantly improve compression. A list of attributes corresponding to variable attributes defined in the netCDF file can be obtained with the ncattrs method. """ def __init__(self, varname, NetCDFFile, datatype, dimensions, least_significant_digit=None,expectedsize=1000,filters=None): if datatype not in _netcdftype_dict.keys(): raise ValueError, 'datatype must be one of %s'%_netcdftype_dict.keys() self._NetCDF_parent = NetCDFFile _NetCDF_FillValue = _fillvalue_dict[datatype] vardimsizes = [] for d in dimensions: vardimsizes.append(NetCDFFile.dimensions[d]) extdim = -1; ndim = 0 for vardim in vardimsizes: if vardim == None: extdim = ndim break ndim += 1 if extdim >= 0: # set shape to 0 for extdim. vardimsizes[extdim] = 0 if datatype == 'c': # Special case for Numeric character objects # (on which base Scientific.IO.NetCDF works) atom = tables.StringAtom(itemsize=1) else: type_ = _rev_typecode_dict[datatype] atom = tables.Atom.from_type(type_) if filters is None: # default filters instance. filters = tables.Filters(complevel=6,complib='zlib',shuffle=1) if extdim >= 0: # check that unlimited dimension is first (extdim=0). #if extdim != 0: # raise ValueError,'unlimited or enlargeable dimension must be most significant (slowest changing, or first) one in order to convert to a true netCDF file' # enlargeable dimension, use EArray self._NetCDF_varobj = NetCDFFile._NetCDF_h5file.createEArray( where=NetCDFFile._NetCDF_h5file.root, name=varname,atom=atom,shape=tuple(vardimsizes), title=varname,filters=filters, expectedrows=expectedsize) else: # no enlargeable dimension, use CArray self._NetCDF_varobj = NetCDFFile._NetCDF_h5file.createCArray( where=NetCDFFile._NetCDF_h5file.root, name=varname,atom=atom,shape=tuple(vardimsizes), title=varname,filters=filters) # fill with _FillValue if datatype == 'c': # numpy string arrays with itemsize=1 used for char arrays. deflen = numpy.prod(vardimsizes, dtype='int64') self[:] = numpy.ndarray(buffer=_NetCDF_FillValue*deflen, shape=tuple(vardimsizes), dtype="S1") else: dtype = _rev_typecode_dict[datatype] self[:] = _NetCDF_FillValue*numpy.ones(tuple(vardimsizes), dtype=dtype) if least_significant_digit != None: setattr(self._NetCDF_varobj.attrs, 'least_significant_digit', least_significant_digit) setattr(self._NetCDF_varobj.attrs,'dimensions',dimensions) self._NetCDF_FillValue = _NetCDF_FillValue def __setitem__(self,key,data): if hasattr(self,'least_significant_digit'): self._NetCDF_varobj[key] = _quantize(data,self.least_significant_digit) else: self._NetCDF_varobj[key] = data def __getitem__(self,key): return self._NetCDF_varobj[key] def __len__(self): return int(self._NetCDF_varobj.shape[0]) def __setattr__(self,name,value): # if name begins with '_NetCDF_', it is a temporary at the python level # (not stored in the hdf5 file). # dimensions is a read only attribute if name in ['dimensions']: raise KeyError, '"dimensions" is a read-only attribute - cannot modify' if not name.startswith('_NetCDF_'): setattr(self._NetCDF_varobj.attrs,name,value) elif not name.endswith('__'): self.__dict__[name]=value def __getattr__(self,name): if name.startswith('__') and name.endswith('__'): raise AttributeError elif name.startswith('_NetCDF_'): return self.__dict__[name] else: if self._NetCDF_varobj.__dict__.has_key(name): return self._NetCDF_varobj.__dict__[name] else: return self._NetCDF_varobj.attrs.__dict__[name] def typecode(self): """ return a single character Numeric typecode. Allowed values are 'd' == float64, 'f' == float32, 'l' == int32, 'i' == int32, 's' == int16, '1' == int8, 'c' == string (length 1), 'F' == complex64 and 'D' == complex128. The corresponding NetCDF data types are 'double', 'float', 'int', 'int', 'short', 'byte' and 'character'. ('D' and 'F' have no corresponding netCDF data types). """ return _typecode_dict[self._NetCDF_varobj.atom.type] def ncattrs(self): """return attributes corresponding to netCDF variable attributes""" return [attr for attr in self._NetCDF_varobj.attrs._v_attrnamesuser if attr != 'dimensions'] def append(self,data): """ Append data along unlimited dimension of a NetCDFVariable. The data must have either the same number of dimensions as the NetCDFVariable instance that it is being append to, or one less. If it has one less dimension, it assumed that the missing dimension is a singleton dimension corresponding to the unlimited dimension of the NetCDFVariable. If the NetCDFVariable has a least_significant_digit attribute, the data is truncated (quantized) to improve compression. """ if self._NetCDF_parent._NetCDF_mode == 'r': raise IOError, 'file is read only' # if data is not an array, try to make it so. try: datashp = data.shape except: data = numpy.array(data, _rev_typecode_dict[self.typecode()]) # check to make sure there is an unlimited dimension. # (i.e. data is in an EArray). extdim = self._NetCDF_varobj.extdim if extdim < 0: raise IndexError, 'variable has no unlimited dimension' # name of unlimited dimension. extdim_name = self.dimensions[extdim] # special case that data array is same # shape as EArray, minus the enlargeable dimension. # if so, add an extra singleton dimension. if len(data.shape) != len(self._NetCDF_varobj.shape): shapem1 = () for n,dim in enumerate(self._NetCDF_varobj.shape): if n != extdim: shapem1 = shapem1+(dim,) if data.shape == shapem1: shapenew = list(self._NetCDF_varobj.shape) shapenew[extdim]=1 data = numpy.reshape(data, shapenew) else: raise IndexError,'data must either have same number of dimensions as variable, or one less (excluding unlimited dimension)' # append the data to the variable object. if hasattr(self,'least_significant_digit'): self._NetCDF_varobj.append(_quantize(data,self.least_significant_digit)) else: self._NetCDF_varobj.append(data) def assignValue(self,value): """ Assigns value to the variable. """ if self._NetCDF_varobj.extdim >=0: self.append(value) else: self[:] = value def getValue(self): """ Returns the value of the variable. """ return self[:] # only used internally to create netCDF variable objects # from Array objects read in from an hdf5 file. class _NetCDFVariable(NetCDFVariable): def __init__(self, var, NetCDFFile): self._NetCDF_parent = NetCDFFile self._NetCDF_varobj = var self._NetCDF_FillValue = _fillvalue_dict[self.typecode()]