Fiber tracking from DTI or QBall diffusion estimation
This process implements a fascicle reconstruction algorithms. It takes as input diffusion data (
t2_diffusionanddw_diffusionparameters) or bucket file and a several sets of starting point (starting_pointsparameter) and build at most one fascicle per point with the following algorithm:for each starting pointHence, the tracking result is one or zero fascicle per starting point. The tracking algorithm from a pointpdiffusion_data_in_p= interpolation if necessary of diffusion data in pointpmodel= diffusion estimation fromdiffusion_data_in_pnew direction= Likelihood algorithm: along max_eigenvector direction from point p Best choice algorithm: along more probable direction and with inertia Probabilistic algorithm: random walk weighted by probabilities distribution and with inertiafascicle= track fibers forward and backward from pointpendpin directiondis the following.For likelihood algorithm:
result= empty point listlastDirection=dwhilepis inmask: if angle betweendandlastDirectiongreater thanmax_anglebreak end appendptoresultlastDirection=dp=p+step_length*ddiffusion_data_in_p= interpolation of diffusion data in pointpmodel= diffusion model estimation fromdiffusion_data_in_pd= maximum eigenvector of normalizedtensorend returnresultFor other algorithms:
The resulting fascicles are represented as 3D curves. Each curve correspond to a trajectory of the tracking algorithm wich is supposed to follow a fiber fascicle.result= empty point listlastDirection=dwhilepis inmask: appendptoresultlastDirection=dp=p+step_length*ddiffusion_data_in_p= interpolation of diffusion data in pointpmodel= diffusion model estimation fromdiffusion_data_in_pnew direction= weighted random orientation from diffusion model probability distribution ifprobabilistic algorithmnew direction= more probable orientation ifbest choice algorithmd=alphaMap(p)xnew direction+ (1 -alphaMap(p)) x d end returnresultTracking result is composed of bundles
The starting points of the tracking algorithm are given as set of ROI. Therefore each starting point belong to one ROI. This organisation is kept by the tracking algorithm. For each ROI a fascicle bundle is created. This bundle contains all the fascicles tracked from a point of this ROI. Therefore, the result of the tracking is a set of fascicle bundles. Each bundle has a name which is the name of the corresponding ROI.
The bundles structure is kept in a file format composed of one header file (with
.bundlesextension) containing the bunldes structure and a data file (with.bundlesdataextension) containing the trajectories of the fascicles. Therefore each bundle of fascicle can be visualized or analysed separately from the other.
model_type: Choice ( input )
algorithm: Choice ( input )Likelihood algorithm: track fibers forward and backward in max_eigenvector direction from point p.
Best choice algorithm: track fibers forward and backward in more probable direction and with inertia.
Probabilistic algorithm: track fibers forward and backward in random walk weighted by probabilities distribution and with inertia.
interpolation: Choice ( input )Raw data interpolation: DTI or QBall diffusion model is computed at each step after linear interpolation of raw data.
Direction interpolation: at each step the probability along a direction is interpolated with neighbours.
None: no interpolation.
t2_diffusion: T2 Diffusion MR ( input )T2 image extracted from diffusion raw data.
dw_diffusion: DW Diffusion MR ( input )
model: DTI Model ( optional, input )DTI or QBall Model
starting_points: Tracking regions ( input )ROI graph or label image used to define starting points. In each selected voxel,points_per_voxelpoints are used as starting point for tracking. Each starting point gives at most one curve corresponding to a putative fibers fascicle.
starting_points_transformation: Transformation matrix ( optional, input )Transformation applied to all starting points. For example if you drew ROIs on a T1 image, you can use these ROIs to do tracking by providing the transformation between the T1 image and the diffusion image referentials (see Rigid registration with mutual information)
tracking_mask: Diffusion Mask ( input )
points_per_voxel: Integer ( input )Number of points to put in each voxel of the ROIs contained instarting_points
max_angle: Float ( input )Max angle between two consecutive directions.
step_length: Float ( input )At each tracking step, the algorithm select the main tensor direction and movesstep_lengthmillimeters in that direction
bundles: Fascicles bundles ( output )The result of the tracking is stored in this bundles file
density_map: Diffusion Density Map ( optional, output )Density Map where propagation can be seen
storing_step: Integer ( optional, input )Points of the trajectories are stored in the bundles everystoring_step
dimT_density_map: Integer ( optional, input )T Dimension of the Density Map (4D Volume)
sizeT_density_map: Integer ( optional, input )StoresizeT_density_mapsteps in each dim T of the Density Map
Toolbox : Diffusion and Tracking
User level : 1
Identifier :
DiffusionInterpolatedTrackingFile name :
brainvisa/toolboxes/connectomist/processes/Tracking Pipeline Components/DiffusionInterpolatedTracking.pySupported file formats :
t2_diffusion :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagedw_diffusion :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagemodel :Bucketstarting_points :GIS image, Z compressed GIS image, gz compressed GIS image, VIDA image, NIFTI-1 image, gz compressed ECAT i image, MINC image, gz compressed MINC image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, Graph and data, gz compressed VIDA image, Z compressed VIDA image, Z compressed ECAT i image, gz compressed ECAT v image, ECAT i image, Z compressed ECAT v image, PNG image, JPEG image, MNG image, GIF image, Z compressed SPM image, SPM image, gz compressed SPM image, ECAT v imagestarting_points_transformation :Transformation matrixtracking_mask :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagebundles :Aims bundlesdensity_map :GIS image, VIDA image, NIFTI-1 image, MINC image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v image