This process compute several quantitative information for each input fascicles bundle.
This process computes scalar features for each input fascicles bundle. The term scalar feature is used as a generic way to refer to a set of scalar values related to one property of an object. For example, a bundle object contains fascicles. Each fascicle has a length. Therefore a
length
feature can be defined for the bundle. The different values contained in this feature are all related to the length of the fascicles contained in the bundle. This process compute five values for thelength
feature:
min:
Length of the shortest fascicle.max:
Length of the longest fascicle.mean:
Mean length of the fascicles.stddev:
Standard deviation fo the fascicles length.median:
Median length of the fascicles.Two kind of features on each bundle of fascicles:
- Morphological features: To date only fascicle
length
is used but the morphological feature set is likely to enlarge in the future. Thelength
feature contains the values described above.- Image projection features: Each fascicle is projected in the various images given in parameter of this process. Then statistics about each image value along the projected fascicle are extracted. Each image given in parameter produce one feature:
Each image related feature contains statistics computed on the image (
adc:
Apparent diffusion coefficient.fa:
Fractional anisotropy.vr:
Volume ratio.stddev:
Diffusion standard deviation.vr:
Diffusion weighted T2.min
,max
,mean
,stddev
andmedian
). These values are computed for all the points of all the fascicles of each bundle (as if each bundle was used as a ROI).
If the process parameterslices
is used, statistics along each bundle length are produced. Each bundle is cut inslices
slices. Then, each slice point is projected in the images and the same values as bundle statistics are computed for each slice (min
,max
,mean
,stddev
andmedian
). In this case, the feature contains both one bundle global value and one vector ofslices
values for each statistic.The result of this process is stored in a
feature_1.0
format (which is a minf format and can therefore use either a Python syntax or a XML syntax). This result is organised as a hierarchy. The first level of this hierarchy contains one element per bundle. On the second level (i.e. for each bundle), there is one element for each feature. On the third level ( i.e. for each feature), there is one element (containing a single number) for each statistic function (min
,max
,mean
,stddev
andmedian
) and one optional element called_vectors
(ifslices
is used) containing one vector of numbers for each statistic function (and anabscissa
element which can be used to display these vectors as graphs). Here is an example of afeature_1.0
file computed on a bundle set containing 2 bundles (roi_1
androi_2
) and withslices = 10
:attributes = { 'format': 'features_1.0', 'content_type': 'bundles_features', 'roi_01': { 'adc': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 8.75151e-10, 7.8922e-10, 7.9116e-10, 7.63253e-10, 7.51277e-10, 7.7328e-10, 7.71915e-10, 7.72216e-10, 7.88993e-10, 8.01587e-10, ], 'stddev': [ 2.6872e-10, 5.54337e-11, 5.35846e-11, 3.8797e-11, 5.03774e-11, 3.9858e-11, 4.18283e-11, 4.06521e-11, 5.86814e-11, 3.09343e-10, ], 'min': [ 5.1147e-10, 6.85862e-10, 6.82759e-10, 7.03226e-10, 6.35999e-10, 6.66687e-10, 6.99779e-10, 7.10966e-10, 6.90667e-10, 3.52562e-11, ], 'max': [ 1.90512e-09, 9.2389e-10, 9.15974e-10, 8.46003e-10, 8.79147e-10, 8.58503e-10, 8.73618e-10, 8.8356e-10, 9.28362e-10, 1.7861e-09, ], 'median': [ 8.0669e-10, 7.85439e-10, 7.81571e-10, 7.60641e-10, 7.50846e-10, 7.71922e-10, 7.6772e-10, 7.67205e-10, 7.91226e-10, 8.14963e-10, ], }, 'mean': 7.86453e-10, 'stddev': 1.0537e-10, 'min': 3.52562e-11, 'max': 2.00021e-09, 'median': 7.7649e-10, }, 'dwt2': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 443.892, 422.896, 416.619, 417.83, 414.836, 413.76, 414.646, 413.964, 419.753, 351.112, ], 'stddev': [ 70.244, 39.1324, 27.4811, 23.1174, 21.4667, 25.2494, 27.2151, 22.0603, 17.74, 112.446, ], 'min': [ 165.674, 357.585, 315.187, 356.166, 363.467, 340.483, 341.984, 329.286, 356.265, 28.465, ], 'max': [ 571.684, 535.659, 453.59, 451.237, 440.847, 448.838, 443.863, 447.302, 464.549, 440.419, ], 'median': [ 444.106, 418.882, 420.224, 420.142, 421.6, 418.705, 425.239, 419.093, 418.105, 407.313, ], }, 'mean': 420.76, 'stddev': 36.9771, 'min': 28.465, 'max': 603.872, 'median': 424.657, }, 'fa': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 0.511815, 0.496629, 0.604314, 0.628366, 0.59314, 0.523773, 0.494426, 0.516998, 0.423428, 0.257682, ], 'stddev': [ 0.135839, 0.154436, 0.127339, 0.0921732, 0.126183, 0.12906, 0.083203, 0.0843948, 0.101978, 0.156139, ], 'min': [ 0.214012, 0.243474, 0.305914, 0.375954, 0.252565, 0.29064, 0.349038, 0.327365, 0.226794, 0.00167768, ], 'max': [ 0.77341, 0.752725, 0.772975, 0.771586, 0.790421, 0.73756, 0.643487, 0.65627, 0.603582, 0.481977, ], 'median': [ 0.488002, 0.480083, 0.627162, 0.642, 0.607358, 0.524098, 0.488491, 0.53764, 0.404398, 0.285002, ], }, 'mean': 0.514956, 'stddev': 0.139625, 'min': 0.00167768, 'max': 0.83117, 'median': 0.525463, }, 'stddev': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 2.9076e-10, 2.14055e-10, 3.0577e-10, 3.50443e-10, 3.36184e-10, 2.90465e-10, 2.61997e-10, 2.7067e-10, 2.14319e-10, 1.37787e-10, ], 'stddev': [ 1.35863e-10, 1.15343e-10, 1.25589e-10, 9.10421e-11, 9.04655e-11, 1.0705e-10, 7.72566e-11, 8.04067e-11, 5.83886e-11, 9.22118e-11, ], 'min': [ 1.16895e-10, 5.24838e-11, 5.3487e-11, 1.17174e-10, 1.53199e-10, 1.05018e-10, 1.26519e-10, 9.88504e-11, 6.82857e-11, 2.81754e-12, ], 'max': [ 5.76015e-10, 4.76216e-10, 5.36406e-10, 5.19542e-10, 5.12446e-10, 5.10919e-10, 4.18639e-10, 4.19344e-10, 3.20628e-10, 3.26826e-10, ], 'median': [ 2.46676e-10, 2.02138e-10, 3.11621e-10, 3.57696e-10, 3.18832e-10, 2.90912e-10, 2.49506e-10, 2.85428e-10, 2.2151e-10, 1.26879e-10, ], }, 'mean': 2.67689e-10, 'stddev': 1.06195e-10, 'min': 1.81471e-12, 'max': 5.91988e-10, 'median': 2.69958e-10, }, 'vr': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 0.299651, 0.289705, 0.42047, 0.436608, 0.40042, 0.328453, 0.270725, 0.300002, 0.211442, 0.101387, ], 'stddev': [ 0.149027, 0.167209, 0.159751, 0.12273, 0.153615, 0.171637, 0.0946103, 0.0930927, 0.0967568, 0.0864733, ], 'min': [ 0.0557933, 0.059842, 0.101457, 0.159361, 0.0681085, 0.0883092, 0.123964, 0.116549, 0.0579234, 0.000132187, ], 'max': [ 0.641994, 0.610262, 0.647237, 0.630444, 0.723072, 0.760691, 0.442624, 0.47167, 0.416598, 0.293256, ], 'median': [ 0.258129, 0.236291, 0.443339, 0.434753, 0.399115, 0.307833, 0.25958, 0.303568, 0.181795, 0.0945587, ], }, 'mean': 0.30949, 'stddev': 0.152233, 'min': 0.000132187, 'max': 0.791289, 'median': 0.297167, }, 'length': { 'mean': 69.4554, 'stddev': 24.695, 'min': 28.5937, 'max': 112.5, 'median': 77.8125, }, }, 'roi_02': { 'adc': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 7.55662e-10, 7.96565e-10, 7.82272e-10, 7.77354e-10, 7.73943e-10, 7.69115e-10, 7.7612e-10, 8.14012e-10, 8.10743e-10, 9.58386e-10, ], 'stddev': [ 4.50403e-10, 4.26217e-11, 5.45371e-11, 4.33616e-11, 5.14154e-11, 4.09276e-11, 4.64212e-11, 1.43277e-10, 1.38865e-10, 5.77474e-10, ], 'min': [ 9.59585e-13, 7.35933e-10, 6.89633e-10, 6.87511e-10, 6.78084e-10, 6.53927e-10, 6.95704e-10, 7.2073e-10, 6.4995e-10, 6.18574e-11, ], 'max': [ 2.50078e-09, 8.7775e-10, 9.10358e-10, 8.59984e-10, 8.7873e-10, 8.33277e-10, 8.89597e-10, 1.57785e-09, 1.42435e-09, 3.72835e-09, ], 'median': [ 7.86301e-10, 8.02156e-10, 7.81642e-10, 7.79362e-10, 7.70891e-10, 7.71519e-10, 7.75616e-10, 7.9634e-10, 7.93467e-10, 8.25472e-10, ], }, 'mean': 7.93734e-10, 'stddev': 1.09571e-10, 'min': 9.59585e-13, 'max': 3.72835e-09, 'median': 7.82111e-10, }, 'dwt2': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 333.191, 418.477, 416.837, 417.536, 414.326, 412.153, 411.785, 405.289, 411.277, 404.563, ], 'stddev': [ 141.479, 16.8872, 22.9798, 20.479, 26.5082, 21.8279, 20.5653, 41.0517, 40.3369, 102.338, ], 'min': [ 39.0871, 385.93, 319.668, 352.065, 325.444, 326.714, 365.613, 219.101, 279.206, 49.4523, ], 'max': [ 446.521, 468.025, 439.407, 440.123, 441.916, 442.182, 458.386, 450.591, 501.788, 538.31, ], 'median': [ 410.499, 420.74, 424.093, 424.597, 426.4, 419.474, 420.086, 413.785, 412.526, 431.846, ], }, 'mean': 416.292, 'stddev': 32.6972, 'min': 39.0871, 'max': 538.31, 'median': 421.23, }, 'fa': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 0.25885, 0.440121, 0.47062, 0.481671, 0.513904, 0.57113, 0.621281, 0.604215, 0.522728, 0.442348, ], 'stddev': [ 0.162208, 0.12572, 0.103203, 0.124597, 0.125426, 0.114154, 0.112637, 0.13612, 0.152782, 0.171637, ], 'min': [ 2.48595e-05, 0.248728, 0.265612, 0.286785, 0.288229, 0.332387, 0.393642, 0.314669, 0.233174, 0.0107373, ], 'max': [ 0.549464, 0.776157, 0.659183, 0.704337, 0.717392, 0.750768, 0.810673, 0.806267, 0.763482, 0.714531, ], 'median': [ 0.304338, 0.454821, 0.477216, 0.511547, 0.573017, 0.608326, 0.650218, 0.631319, 0.534586, 0.455771, ], }, 'mean': 0.514779, 'stddev': 0.143334, 'min': 2.48595e-05, 'max': 0.825248, 'median': 0.514497, }, 'stddev': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 1.19706e-10, 2.45966e-10, 2.35657e-10, 2.44345e-10, 2.50864e-10, 2.96496e-10, 3.2689e-10, 3.08604e-10, 2.33414e-10, 2.0985e-10, ], 'stddev': [ 7.8038e-11, 9.74333e-11, 7.45896e-11, 9.35785e-11, 1.0075e-10, 8.84268e-11, 9.49522e-11, 1.11094e-10, 9.50538e-11, 1.12851e-10, ], 'min': [ 3.38967e-14, 1.08523e-10, 7.91196e-11, 7.33858e-11, 6.10919e-11, 1.09162e-10, 1.43504e-10, 1.05246e-10, 7.93635e-11, 6.01953e-12, ], 'max': [ 2.60609e-10, 5.34382e-10, 3.71282e-10, 4.21096e-10, 4.57033e-10, 4.81864e-10, 5.05082e-10, 5.30173e-10, 4.36367e-10, 4.9898e-10, ], 'median': [ 1.31989e-10, 2.61754e-10, 2.42623e-10, 2.29916e-10, 2.46681e-10, 3.05931e-10, 3.54037e-10, 3.48675e-10, 2.4594e-10, 1.87596e-10, ], }, 'mean': 2.55931e-10, 'stddev': 1.0251e-10, 'min': 3.38967e-14, 'max': 6.22208e-10, 'median': 2.49369e-10, }, 'vr': { '_vectors': { 'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ], 'mean': [ 0.107356, 0.222856, 0.250605, 0.26674, 0.301366, 0.365061, 0.431092, 0.410786, 0.318461, 0.245799, ], 'stddev': [ 0.0916894, 0.123492, 0.11069, 0.141392, 0.137019, 0.134859, 0.149091, 0.167859, 0.167866, 0.149612, ], 'min': [ 1.2666e-06, 0.063185, 0.0772016, 0.0789892, 0.0909701, 0.121205, 0.163633, 0.0984095, 0.0576192, 0.00185344, ], 'max': [ 0.305612, 0.638708, 0.487381, 0.580751, 0.553781, 0.605434, 0.73563, 0.717495, 0.650704, 0.519696, ], 'median': [ 0.0972249, 0.231472, 0.240343, 0.26659, 0.33249, 0.392522, 0.443441, 0.427296, 0.309672, 0.229115, ], }, 'mean': 0.306806, 'stddev': 0.156608, 'min': 1.2666e-06, 'max': 0.751079, 'median': 0.283922, }, 'length': { 'mean': 69.4482, 'stddev': 22.3767, 'min': 29.5313, 'max': 107.344, 'median': 73.125, }, }, }
Features files can be viewed by clicking on the eye icon which calls Show Scalar Features.
bundles: Fascicles bundles ( entrée )fascicles bundle set file
bundles_transformation: Transformation matrix ( optional, entrée )Referential transformation applied to each fascicle point.
minimum_length: Réel ( optional, input )Remove all fascicles shorter than minimum_length millimeters.
slices: Entier ( optional, input )Each fascicles bundle is cut inslices
parts to get information along the bundle trajectory.
apparent_diffusion_coefficient: Apparent Diffusion Coefficient ( optional, entrée )If this parameter is given, apparent diffusion coefficient values along the fascicles are included in output features
fractional_anisotropy: Fractional Anisotropy ( optional, entrée )If this parameter is given, fractional anisotropy values along the fascicles are included in output features
volume_ratio: Volume Ratio ( optional, entrée )If this parameter is given, volume ratio values along the fascicles are included in output features
standard_deviation: Diffusion Standard Deviation ( optional, entrée )If this parameter is given, standard deviation image values along the fascicles are included in output features
diffusion_weighted_t2: Diffusion Weighted T2 ( optional, entrée )If this parameter is given, diffusion weighted T2 values along the fascicles are included in output features
statistics: Bundles scalar features ( sortie )Output file containing extracted features (i.e. numerical values)
Toolbox : Diffusion et Tractographie
Niveau d'utilisateur : 1
Identifiant :
DiffusionBundleAnalysis
Nom de fichier :
brainvisa/toolboxes/connectomist/processes/Tracking Pipeline Components/DiffusionBundleAnalysis.py
Supported file formats :
bundles :Aims bundlesbundles_transformation :Transformation matrixapparent_diffusion_coefficient :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagefractional_anisotropy :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagevolume_ratio :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagestandard_deviation :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagediffusion_weighted_t2 :GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v imagestatistics :Aims scalar features