Diffusion Analyse des Faisceaux

This process compute several quantitative information for each input fascicles bundle.

Description

This process computes scalar features for each input fascicles bundle. The term scalar feature is used as a generic way to refer to a set of scalar values related to one property of an object. For example, a bundle object contains fascicles. Each fascicle has a length. Therefore a length feature can be defined for the bundle. The different values contained in this feature are all related to the length of the fascicles contained in the bundle. This process compute five values for the length feature:

Two kind of features on each bundle of fascicles:

The result of this process is stored in a feature_1.0 format (which is a minf format and can therefore use either a Python syntax or a XML syntax). This result is organised as a hierarchy. The first level of this hierarchy contains one element per bundle. On the second level (i.e. for each bundle), there is one element for each feature. On the third level ( i.e. for each feature), there is one element (containing a single number) for each statistic function (min, max, mean, stddev and median) and one optional element called _vectors (if slices is used) containing one vector of numbers for each statistic function (and an abscissa element which can be used to display these vectors as graphs). Here is an example of a feature_1.0 file computed on a bundle set containing 2 bundles (roi_1 and roi_2) and with slices = 10:


attributes = {
  'format': 'features_1.0',
  'content_type': 'bundles_features',
  'roi_01': {
    'adc': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 8.75151e-10, 7.8922e-10, 7.9116e-10, 7.63253e-10, 7.51277e-10, 7.7328e-10, 7.71915e-10, 7.72216e-10, 7.88993e-10, 8.01587e-10, ],
        'stddev': [ 2.6872e-10, 5.54337e-11, 5.35846e-11, 3.8797e-11, 5.03774e-11, 3.9858e-11, 4.18283e-11, 4.06521e-11, 5.86814e-11, 3.09343e-10, ],
        'min': [ 5.1147e-10, 6.85862e-10, 6.82759e-10, 7.03226e-10, 6.35999e-10, 6.66687e-10, 6.99779e-10, 7.10966e-10, 6.90667e-10, 3.52562e-11, ],
        'max': [ 1.90512e-09, 9.2389e-10, 9.15974e-10, 8.46003e-10, 8.79147e-10, 8.58503e-10, 8.73618e-10, 8.8356e-10, 9.28362e-10, 1.7861e-09, ],
        'median': [ 8.0669e-10, 7.85439e-10, 7.81571e-10, 7.60641e-10, 7.50846e-10, 7.71922e-10, 7.6772e-10, 7.67205e-10, 7.91226e-10, 8.14963e-10, ],
      },
      'mean': 7.86453e-10,
      'stddev': 1.0537e-10,
      'min': 3.52562e-11,
      'max': 2.00021e-09,
      'median': 7.7649e-10,
    },
    'dwt2': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 443.892, 422.896, 416.619, 417.83, 414.836, 413.76, 414.646, 413.964, 419.753, 351.112, ],
        'stddev': [ 70.244, 39.1324, 27.4811, 23.1174, 21.4667, 25.2494, 27.2151, 22.0603, 17.74, 112.446, ],
        'min': [ 165.674, 357.585, 315.187, 356.166, 363.467, 340.483, 341.984, 329.286, 356.265, 28.465, ],
        'max': [ 571.684, 535.659, 453.59, 451.237, 440.847, 448.838, 443.863, 447.302, 464.549, 440.419, ],
        'median': [ 444.106, 418.882, 420.224, 420.142, 421.6, 418.705, 425.239, 419.093, 418.105, 407.313, ],
      },
      'mean': 420.76,
      'stddev': 36.9771,
      'min': 28.465,
      'max': 603.872,
      'median': 424.657,
    },
    'fa': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 0.511815, 0.496629, 0.604314, 0.628366, 0.59314, 0.523773, 0.494426, 0.516998, 0.423428, 0.257682, ],
        'stddev': [ 0.135839, 0.154436, 0.127339, 0.0921732, 0.126183, 0.12906, 0.083203, 0.0843948, 0.101978, 0.156139, ],
        'min': [ 0.214012, 0.243474, 0.305914, 0.375954, 0.252565, 0.29064, 0.349038, 0.327365, 0.226794, 0.00167768, ],
        'max': [ 0.77341, 0.752725, 0.772975, 0.771586, 0.790421, 0.73756, 0.643487, 0.65627, 0.603582, 0.481977, ],
        'median': [ 0.488002, 0.480083, 0.627162, 0.642, 0.607358, 0.524098, 0.488491, 0.53764, 0.404398, 0.285002, ],
      },
      'mean': 0.514956,
      'stddev': 0.139625,
      'min': 0.00167768,
      'max': 0.83117,
      'median': 0.525463,
    },
    'stddev': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 2.9076e-10, 2.14055e-10, 3.0577e-10, 3.50443e-10, 3.36184e-10, 2.90465e-10, 2.61997e-10, 2.7067e-10, 2.14319e-10, 1.37787e-10, ],
        'stddev': [ 1.35863e-10, 1.15343e-10, 1.25589e-10, 9.10421e-11, 9.04655e-11, 1.0705e-10, 7.72566e-11, 8.04067e-11, 5.83886e-11, 9.22118e-11, ],
        'min': [ 1.16895e-10, 5.24838e-11, 5.3487e-11, 1.17174e-10, 1.53199e-10, 1.05018e-10, 1.26519e-10, 9.88504e-11, 6.82857e-11, 2.81754e-12, ],
        'max': [ 5.76015e-10, 4.76216e-10, 5.36406e-10, 5.19542e-10, 5.12446e-10, 5.10919e-10, 4.18639e-10, 4.19344e-10, 3.20628e-10, 3.26826e-10, ],
        'median': [ 2.46676e-10, 2.02138e-10, 3.11621e-10, 3.57696e-10, 3.18832e-10, 2.90912e-10, 2.49506e-10, 2.85428e-10, 2.2151e-10, 1.26879e-10, ],
      },
      'mean': 2.67689e-10,
      'stddev': 1.06195e-10,
      'min': 1.81471e-12,
      'max': 5.91988e-10,
      'median': 2.69958e-10,
    },
    'vr': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 0.299651, 0.289705, 0.42047, 0.436608, 0.40042, 0.328453, 0.270725, 0.300002, 0.211442, 0.101387, ],
        'stddev': [ 0.149027, 0.167209, 0.159751, 0.12273, 0.153615, 0.171637, 0.0946103, 0.0930927, 0.0967568, 0.0864733, ],
        'min': [ 0.0557933, 0.059842, 0.101457, 0.159361, 0.0681085, 0.0883092, 0.123964, 0.116549, 0.0579234, 0.000132187, ],
        'max': [ 0.641994, 0.610262, 0.647237, 0.630444, 0.723072, 0.760691, 0.442624, 0.47167, 0.416598, 0.293256, ],
        'median': [ 0.258129, 0.236291, 0.443339, 0.434753, 0.399115, 0.307833, 0.25958, 0.303568, 0.181795, 0.0945587, ],
      },
      'mean': 0.30949,
      'stddev': 0.152233,
      'min': 0.000132187,
      'max': 0.791289,
      'median': 0.297167,
    },
    'length': {
      'mean': 69.4554,
      'stddev': 24.695,
      'min': 28.5937,
      'max': 112.5,
      'median': 77.8125,
    },
  },
  'roi_02': {
    'adc': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 7.55662e-10, 7.96565e-10, 7.82272e-10, 7.77354e-10, 7.73943e-10, 7.69115e-10, 7.7612e-10, 8.14012e-10, 8.10743e-10, 9.58386e-10, ],
        'stddev': [ 4.50403e-10, 4.26217e-11, 5.45371e-11, 4.33616e-11, 5.14154e-11, 4.09276e-11, 4.64212e-11, 1.43277e-10, 1.38865e-10, 5.77474e-10, ],
        'min': [ 9.59585e-13, 7.35933e-10, 6.89633e-10, 6.87511e-10, 6.78084e-10, 6.53927e-10, 6.95704e-10, 7.2073e-10, 6.4995e-10, 6.18574e-11, ],
        'max': [ 2.50078e-09, 8.7775e-10, 9.10358e-10, 8.59984e-10, 8.7873e-10, 8.33277e-10, 8.89597e-10, 1.57785e-09, 1.42435e-09, 3.72835e-09, ],
        'median': [ 7.86301e-10, 8.02156e-10, 7.81642e-10, 7.79362e-10, 7.70891e-10, 7.71519e-10, 7.75616e-10, 7.9634e-10, 7.93467e-10, 8.25472e-10, ],
      },
      'mean': 7.93734e-10,
      'stddev': 1.09571e-10,
      'min': 9.59585e-13,
      'max': 3.72835e-09,
      'median': 7.82111e-10,
    },
    'dwt2': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 333.191, 418.477, 416.837, 417.536, 414.326, 412.153, 411.785, 405.289, 411.277, 404.563, ],
        'stddev': [ 141.479, 16.8872, 22.9798, 20.479, 26.5082, 21.8279, 20.5653, 41.0517, 40.3369, 102.338, ],
        'min': [ 39.0871, 385.93, 319.668, 352.065, 325.444, 326.714, 365.613, 219.101, 279.206, 49.4523, ],
        'max': [ 446.521, 468.025, 439.407, 440.123, 441.916, 442.182, 458.386, 450.591, 501.788, 538.31, ],
        'median': [ 410.499, 420.74, 424.093, 424.597, 426.4, 419.474, 420.086, 413.785, 412.526, 431.846, ],
      },
      'mean': 416.292,
      'stddev': 32.6972,
      'min': 39.0871,
      'max': 538.31,
      'median': 421.23,
    },
    'fa': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 0.25885, 0.440121, 0.47062, 0.481671, 0.513904, 0.57113, 0.621281, 0.604215, 0.522728, 0.442348, ],
        'stddev': [ 0.162208, 0.12572, 0.103203, 0.124597, 0.125426, 0.114154, 0.112637, 0.13612, 0.152782, 0.171637, ],
        'min': [ 2.48595e-05, 0.248728, 0.265612, 0.286785, 0.288229, 0.332387, 0.393642, 0.314669, 0.233174, 0.0107373, ],
        'max': [ 0.549464, 0.776157, 0.659183, 0.704337, 0.717392, 0.750768, 0.810673, 0.806267, 0.763482, 0.714531, ],
        'median': [ 0.304338, 0.454821, 0.477216, 0.511547, 0.573017, 0.608326, 0.650218, 0.631319, 0.534586, 0.455771, ],
      },
      'mean': 0.514779,
      'stddev': 0.143334,
      'min': 2.48595e-05,
      'max': 0.825248,
      'median': 0.514497,
    },
    'stddev': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 1.19706e-10, 2.45966e-10, 2.35657e-10, 2.44345e-10, 2.50864e-10, 2.96496e-10, 3.2689e-10, 3.08604e-10, 2.33414e-10, 2.0985e-10, ],
        'stddev': [ 7.8038e-11, 9.74333e-11, 7.45896e-11, 9.35785e-11, 1.0075e-10, 8.84268e-11, 9.49522e-11, 1.11094e-10, 9.50538e-11, 1.12851e-10, ],
        'min': [ 3.38967e-14, 1.08523e-10, 7.91196e-11, 7.33858e-11, 6.10919e-11, 1.09162e-10, 1.43504e-10, 1.05246e-10, 7.93635e-11, 6.01953e-12, ],
        'max': [ 2.60609e-10, 5.34382e-10, 3.71282e-10, 4.21096e-10, 4.57033e-10, 4.81864e-10, 5.05082e-10, 5.30173e-10, 4.36367e-10, 4.9898e-10, ],
        'median': [ 1.31989e-10, 2.61754e-10, 2.42623e-10, 2.29916e-10, 2.46681e-10, 3.05931e-10, 3.54037e-10, 3.48675e-10, 2.4594e-10, 1.87596e-10, ],
      },
      'mean': 2.55931e-10,
      'stddev': 1.0251e-10,
      'min': 3.38967e-14,
      'max': 6.22208e-10,
      'median': 2.49369e-10,
    },
    'vr': {
      '_vectors': {
        'abscissa': [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],
        'mean': [ 0.107356, 0.222856, 0.250605, 0.26674, 0.301366, 0.365061, 0.431092, 0.410786, 0.318461, 0.245799, ],
        'stddev': [ 0.0916894, 0.123492, 0.11069, 0.141392, 0.137019, 0.134859, 0.149091, 0.167859, 0.167866, 0.149612, ],
        'min': [ 1.2666e-06, 0.063185, 0.0772016, 0.0789892, 0.0909701, 0.121205, 0.163633, 0.0984095, 0.0576192, 0.00185344, ],
        'max': [ 0.305612, 0.638708, 0.487381, 0.580751, 0.553781, 0.605434, 0.73563, 0.717495, 0.650704, 0.519696, ],
        'median': [ 0.0972249, 0.231472, 0.240343, 0.26659, 0.33249, 0.392522, 0.443441, 0.427296, 0.309672, 0.229115, ],
      },
      'mean': 0.306806,
      'stddev': 0.156608,
      'min': 1.2666e-06,
      'max': 0.751079,
      'median': 0.283922,
    },
    'length': {
      'mean': 69.4482,
      'stddev': 22.3767,
      'min': 29.5313,
      'max': 107.344,
      'median': 73.125,
    },
  },
}

Features files can be viewed by clicking on the eye icon which calls Show Scalar Features.

Paramètres

bundles: Fascicles bundles ( entrée )
fascicles bundle set file
bundles_transformation: Transformation matrix ( optional, entrée )
Referential transformation applied to each fascicle point.
minimum_length: Réel ( optional, input )
Remove all fascicles shorter than minimum_length millimeters.
slices: Entier ( optional, input )
Each fascicles bundle is cut in slices parts to get information along the bundle trajectory.
apparent_diffusion_coefficient: Apparent Diffusion Coefficient ( optional, entrée )
If this parameter is given, apparent diffusion coefficient values along the fascicles are included in output features
fractional_anisotropy: Fractional Anisotropy ( optional, entrée )
If this parameter is given, fractional anisotropy values along the fascicles are included in output features
volume_ratio: Volume Ratio ( optional, entrée )
If this parameter is given, volume ratio values along the fascicles are included in output features
standard_deviation: Diffusion Standard Deviation ( optional, entrée )
If this parameter is given, standard deviation image values along the fascicles are included in output features
diffusion_weighted_t2: Diffusion Weighted T2 ( optional, entrée )
If this parameter is given, diffusion weighted T2 values along the fascicles are included in output features
statistics: Bundles scalar features ( sortie )
Output file containing extracted features (i.e. numerical values)

Informations techniques

Toolbox : Diffusion et Tractographie

Niveau d'utilisateur : 1

Identifiant : DiffusionBundleAnalysis

Nom de fichier : brainvisa/toolboxes/connectomist/processes/Tracking Pipeline Components/DiffusionBundleAnalysis.py

Supported file formats :

bundles :
Aims bundles
bundles_transformation :
Transformation matrix
apparent_diffusion_coefficient :
GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v image
fractional_anisotropy :
GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v image
volume_ratio :
GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v image
standard_deviation :
GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v image
diffusion_weighted_t2 :
GIS image, VIDA image, NIFTI-1 image, MINC image, gz compressed MINC image, DICOM image, TIFF image, XBM image, PBM image, PGM image, BMP image, XPM image, PPM image, gz compressed NIFTI-1 image, TIFF(.tif) image, ECAT i image, PNG image, JPEG image, MNG image, GIF image, SPM image, ECAT v image
statistics :
Aims scalar features