
Definition of curve bundles format
(*.bundles) used in BrainVISA

Yann Cointepas

June, 30th 2004

1 Introduction
This document describes the main format used by BrainVISA and Anatomist to repre-
sent name set of curves. The aimed audience is programmers who wish to generate
bundles with their own software and use them with BrainVISA/Anatomist 1.

2 Format description
The bundle format is composed of two files. One human readable file with the exten-
sion .bundles and one data file with the extension.bundlesdata. The *.bundles
file contains a generic header with the same format as *.minf files of BrainVISA. See
the ”Definition of meta-information format (*.minf) used in BrainVISA ” document
to for a desctiption of the *.minf format.

A *.bundles file contains the following fields :

format (required): Format identifier. A format identifier uses the following pattern:
<format name>.<major version>.<minor version>. To date, ’bundles 1.0’
value is required.

space dimension (optional, default = 3): Space dimension. Must be 3 for bundles 1.0.

curves count (required): Number of fibers in data file (required). Must be ¿ 0 for
bundles 1.0.

data file name (optional, default = ’*.bundlesdata’): File where to find the data.
Must be ’*.bundlesdata’ for bundles 1.0.
A star (*) in the file name is replaced by the header file name without its exten-
sion. This file contains a series of curves. Each curve is a series of points. Each
point is a series of space dimension coordinates.
In ascii mode:

1See http://brainvisa.info for more information about BrainVISA/Anatomist.

1



• A coordinate is a decimal number.
• A point is space dimension space-separated coordinates.
• A curve is a comma separated series of points.
• There is one and only one curve per line.

In binary mode

• A coordinate is a 8 bytes floating point number (a double in C or C++).
• A point is the concatenation of space dimension coordinates.
• A curve is a 4 bytes integer representing the number of points and a series

of points.

3 Fields description
mode: The format can be written either as an ascii text file or as a binary file. The

mode is used to identify the representation it can have three values :

• ’ascii’: the file is in text format.
• ’binarABCD’: the file is in binary format and uses big-endian byte order

for numbers (such as Motorola or Sun processors for example).
• ’binarDCBA’: the file is in binary format and uses little-endian byte

order for numbers (such as Intel processors for example).

textureType: The file format was created with the possibility to include a texture. But
this is never used since textures are represented in a separate format. In ascii
mode his field should always contain ’VOID’ or, in binary mode, a U32 con-
taining 4 (which is the size of the following string) followed by the four charac-
ters ’VOID’.

polygonDimension: This field is an U32 containing the number of points of each poly-
gon. The following values are supported in Anatomist and Aims:

3: Polygons are composed of three points (they are triangles). This is the reco-
manded value for surfaces because other values may not be supported by
all BrainVISA processing tools.

4: Polygon are composed of four points. This is supported in Anatomist but may
not be supported in every BrainVISA processing tools.

2: This value is used to represent segments in a 3D space. Each ”polygon” is
composed of two 3D points.

numberOfTimeSteps: The mesh format can represent several meshes at different time
steps. This is a U32 representing the number of time steps.

timeSteps: This field contains numberOfTimeSteps times the following structure :

instant: a U32 representing a time instant.

2



vectorOf<vertex>: contains all the vertices which are used to build polygons.
vectorOf<normal>: contains the normals of the surface at each vertex. It must

have the same size as vectorOf<vertex> or be empty.
vectorOf<texture>: must be an empty vector (i.e a U32 containing 0).
vectorOf<polygon>: contains the polygons which represent the surface.

vertex: is 3D a point. In ascii mode it has the following syntax: ’(’ FLOAT ’,’
FLOAT ’,’ FLOAT ’)’. In binary mode it is represented by three FLOAT.

normal: is a normalized vector. In ascii mode it has the following syntax: ’(’
FLOAT ’,’ FLOAT ’,’ FLOAT ’)’. In binary mode it is represented by
three FLOAT.

polygon: is a set of polygonDimension points. Each point is represented by a U32
which is an index in vectorOf<vertex>. The first vertex index is zero, the second
is one, etc. In ascii mode it has the following syntax: ’(’ U32 ’,’ U32 ’,’ ...
’,’U32 ’)’. In binary mode it is represented by a series of polygonDimension
elements of type U32.

U32: A 32 bits wide unsigned integer (between 0 and 4294967295). In ascii mode it
is written as a decimal number. In binary mode it is represented on four bytes
with the choosen byte order (see mode above).

FLOAT: A 32 bits wide real number (maximum 3.40282347e+38). In ascii mode it is
written as a decimal number. In binary mode it is represented on four bytes with
the choosen byte order (see mode above).

vectorOf<field>: where field is a field type. It represents a fixed length vector of
elements of type field. It contains the size of the vector (i.e. the number of
elements) as a U32 followed by the elements.

space: A byte with one of the ascii value for a space, a tabulation or a carriage-return.

4 Examples
Here is an example of an ascii mesh file containing a tetrahedron.

ascii
VOID
3
1
0
4 (-0.8,0.8,0) (0.8,8e-1,0) (-1,-1,0) (0,0,1)
4 (-0.8,0.8,0) (0.8,8e-1,0) (-1,-1,0) (0,0,1)
0
4 (0,1,2) (0,3,1) (1,3,2) (2,3,0)

3



Here is an example of an ascii mesh file containing a linear spiral.

ascii
VOID
2
1
0
16
(10, 0, 0) (7.07, 7.07, 0.4) (0, 10, 0.8)
(-7.07, 7.07, 1.2) (-10, 0, 1.6) (-7.07, -7.07, 2.0)
(0, -10, 2.4) (7.07, -7.07, 2.8) (10, 0, 3.2)
(7.07, 7.07, 3.6) (0, 10, 4.0) (-7.07, 7.07, 4.4)
(-10, 0, 4.8) (-7.07, -7.07, 5.2) (0, -10, 5.6)
(7.07, -7.07, 6.0)
0
0
15
(0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9)
(9,10) (10,11) (11,12) (12,13) (13,14) (14,15)

4


