""" Provides a collection of utilities for comparing (image) results. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import hashlib import os import shutil import numpy as np import matplotlib from matplotlib.compat import subprocess from matplotlib.testing.exceptions import ImageComparisonFailure from matplotlib import _png from matplotlib import _get_cachedir from matplotlib import cbook from distutils import version __all__ = ['compare_float', 'compare_images', 'comparable_formats'] def make_test_filename(fname, purpose): """ Make a new filename by inserting `purpose` before the file's extension. """ base, ext = os.path.splitext(fname) return '%s-%s%s' % (base, purpose, ext) def compare_float(expected, actual, relTol=None, absTol=None): """ Fail if the floating point values are not close enough, with the given message. You can specify a relative tolerance, absolute tolerance, or both. """ if relTol is None and absTol is None: raise ValueError("You haven't specified a 'relTol' relative " "tolerance or a 'absTol' absolute tolerance " "function argument. You must specify one.") msg = "" if absTol is not None: absDiff = abs(expected - actual) if absTol < absDiff: template = ['', 'Expected: {expected}', 'Actual: {actual}', 'Abs diff: {absDiff}', 'Abs tol: {absTol}'] msg += '\n '.join([line.format(**locals()) for line in template]) if relTol is not None: # The relative difference of the two values. If the expected value is # zero, then return the absolute value of the difference. relDiff = abs(expected - actual) if expected: relDiff = relDiff / abs(expected) if relTol < relDiff: # The relative difference is a ratio, so it's always unit-less. template = ['', 'Expected: {expected}', 'Actual: {actual}', 'Rel diff: {relDiff}', 'Rel tol: {relTol}'] msg += '\n '.join([line.format(**locals()) for line in template]) return msg or None def get_cache_dir(): cachedir = _get_cachedir() if cachedir is None: raise RuntimeError('Could not find a suitable configuration directory') cache_dir = os.path.join(cachedir, 'test_cache') if not os.path.exists(cache_dir): try: cbook.mkdirs(cache_dir) except IOError: return None if not os.access(cache_dir, os.W_OK): return None return cache_dir def get_file_hash(path, block_size=2 ** 20): md5 = hashlib.md5() with open(path, 'rb') as fd: while True: data = fd.read(block_size) if not data: break md5.update(data) return md5.hexdigest() def make_external_conversion_command(cmd): def convert(old, new): cmdline = cmd(old, new) pipe = subprocess.Popen( cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if not os.path.exists(new) or errcode: msg = "Conversion command failed:\n%s\n" % ' '.join(cmdline) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) return convert def _update_converter(): gs, gs_v = matplotlib.checkdep_ghostscript() if gs_v is not None: def cmd(old, new): return [gs, '-q', '-sDEVICE=png16m', '-dNOPAUSE', '-dBATCH', '-sOutputFile=' + new, old] converter['pdf'] = make_external_conversion_command(cmd) converter['eps'] = make_external_conversion_command(cmd) if matplotlib.checkdep_inkscape() is not None: def cmd(old, new): return ['inkscape', '-z', old, '--export-png', new] converter['svg'] = make_external_conversion_command(cmd) #: A dictionary that maps filename extensions to functions which #: themselves map arguments `old` and `new` (filenames) to a list of strings. #: The list can then be passed to Popen to convert files with that #: extension to png format. converter = {} _update_converter() def comparable_formats(): """ Returns the list of file formats that compare_images can compare on this system. """ return ['png'] + list(six.iterkeys(converter)) def convert(filename, cache): """ Convert the named file into a png file. Returns the name of the created file. If *cache* is True, the result of the conversion is cached in `matplotlib._get_cachedir() + '/test_cache/'`. The caching is based on a hash of the exact contents of the input file. The is no limit on the size of the cache, so it may need to be manually cleared periodically. """ base, extension = filename.rsplit('.', 1) if extension not in converter: raise ImageComparisonFailure( "Don't know how to convert %s files to png" % extension) newname = base + '_' + extension + '.png' if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) # Only convert the file if the destination doesn't already exist or # is out of date. if (not os.path.exists(newname) or os.stat(newname).st_mtime < os.stat(filename).st_mtime): if cache: cache_dir = get_cache_dir() else: cache_dir = None if cache_dir is not None: hash_value = get_file_hash(filename) new_ext = os.path.splitext(newname)[1] cached_file = os.path.join(cache_dir, hash_value + new_ext) if os.path.exists(cached_file): shutil.copyfile(cached_file, newname) return newname converter[extension](filename, newname) if cache_dir is not None: shutil.copyfile(newname, cached_file) return newname #: Maps file extensions to a function which takes a filename as its #: only argument to return a list suitable for execution with Popen. #: The purpose of this is so that the result file (with the given #: extension) can be verified with tools such as xmllint for svg. verifiers = {} # Turning this off, because it seems to cause multiprocessing issues if matplotlib.checkdep_xmllint() and False: verifiers['svg'] = lambda filename: [ 'xmllint', '--valid', '--nowarning', '--noout', filename] def verify(filename): """Verify the file through some sort of verification tool.""" if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) base, extension = filename.rsplit('.', 1) verifier = verifiers.get(extension, None) if verifier is not None: cmd = verifier(filename) pipe = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if errcode != 0: msg = "File verification command failed:\n%s\n" % ' '.join(cmd) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) def crop_to_same(actual_path, actual_image, expected_path, expected_image): # clip the images to the same size -- this is useful only when # comparing eps to pdf if actual_path[-7:-4] == 'eps' and expected_path[-7:-4] == 'pdf': aw, ah = actual_image.shape ew, eh = expected_image.shape actual_image = actual_image[int(aw / 2 - ew / 2):int( aw / 2 + ew / 2), int(ah / 2 - eh / 2):int(ah / 2 + eh / 2)] return actual_image, expected_image def calculate_rms(expectedImage, actualImage): "Calculate the per-pixel errors, then compute the root mean square error." num_values = np.prod(expectedImage.shape) abs_diff_image = abs(expectedImage - actualImage) # On Numpy 1.6, we can use bincount with minlength, which is much # faster than using histogram expected_version = version.LooseVersion("1.6") found_version = version.LooseVersion(np.__version__) if found_version >= expected_version: histogram = np.bincount(abs_diff_image.ravel(), minlength=256) else: histogram = np.histogram(abs_diff_image, bins=np.arange(257))[0] sum_of_squares = np.sum(histogram * np.arange(len(histogram)) ** 2) rms = np.sqrt(float(sum_of_squares) / num_values) return rms def compare_images(expected, actual, tol, in_decorator=False): """ Compare two "image" files checking differences within a tolerance. The two given filenames may point to files which are convertible to PNG via the `.converter` dictionary. The underlying RMS is calculated with the `.calculate_rms` function. Parameters ---------- expected : str The filename of the expected image. actual :str The filename of the actual image. tol : float The tolerance (a color value difference, where 255 is the maximal difference). The test fails if the average pixel difference is greater than this value. in_decorator : bool If called from image_comparison decorator, this should be True. (default=False) Example ------- img1 = "./baseline/plot.png" img2 = "./output/plot.png" compare_images( img1, img2, 0.001 ): """ if not os.path.exists(actual): msg = "Output image %s does not exist." % actual raise Exception(msg) if os.stat(actual).st_size == 0: msg = "Output image file %s is empty." % actual raise Exception(msg) verify(actual) # Convert the image to png extension = expected.split('.')[-1] if not os.path.exists(expected): raise IOError('Baseline image %r does not exist.' % expected) if extension != 'png': actual = convert(actual, False) expected = convert(expected, True) # open the image files and remove the alpha channel (if it exists) expectedImage = _png.read_png_int(expected) actualImage = _png.read_png_int(actual) expectedImage = expectedImage[:, :, :3] actualImage = actualImage[:, :, :3] actualImage, expectedImage = crop_to_same( actual, actualImage, expected, expectedImage) # convert to signed integers, so that the images can be subtracted without # overflow expectedImage = expectedImage.astype(np.int16) actualImage = actualImage.astype(np.int16) rms = calculate_rms(expectedImage, actualImage) diff_image = make_test_filename(actual, 'failed-diff') if rms <= tol: if os.path.exists(diff_image): os.unlink(diff_image) return None save_diff_image(expected, actual, diff_image) results = dict(rms=rms, expected=str(expected), actual=str(actual), diff=str(diff_image), tol=tol) if not in_decorator: # Then the results should be a string suitable for stdout. template = ['Error: Image files did not match.', 'RMS Value: {rms}', 'Expected: \n {expected}', 'Actual: \n {actual}', 'Difference:\n {diff}', 'Tolerance: \n {tol}', ] results = '\n '.join([line.format(**results) for line in template]) return results def save_diff_image(expected, actual, output): expectedImage = _png.read_png(expected) actualImage = _png.read_png(actual) actualImage, expectedImage = crop_to_same( actual, actualImage, expected, expectedImage) expectedImage = np.array(expectedImage).astype(np.float) actualImage = np.array(actualImage).astype(np.float) assert expectedImage.ndim == actualImage.ndim assert expectedImage.shape == actualImage.shape absDiffImage = abs(expectedImage - actualImage) # expand differences in luminance domain absDiffImage *= 255 * 10 save_image_np = np.clip(absDiffImage, 0, 255).astype(np.uint8) height, width, depth = save_image_np.shape # The PDF renderer doesn't produce an alpha channel, but the # matplotlib PNG writer requires one, so expand the array if depth == 3: with_alpha = np.empty((height, width, 4), dtype=np.uint8) with_alpha[:, :, 0:3] = save_image_np save_image_np = with_alpha # Hard-code the alpha channel to fully solid save_image_np[:, :, 3] = 255 _png.write_png(save_image_np, output)