# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Change directory to provide relative paths for doctests >>> import os >>> filepath = os.path.dirname( os.path.realpath( __file__ ) ) >>> datadir = os.path.realpath(os.path.join(filepath, '../../testing/data')) >>> os.chdir(datadir) """ from nipype.interfaces.base import CommandLineInputSpec, CommandLine, traits, TraitedSpec, File from nipype.utils.filemanip import split_filename import os, os.path as op from nipype.interfaces.traits_extension import isdefined class Tracks2ProbInputSpec(CommandLineInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-2, desc='tract file') template_file = File(exists=True, argstr='-template %s', position=1, desc='an image file to be used as a template for the output (the output image wil have the same transform and field of view)') voxel_dims = traits.List(traits.Float, argstr='-vox %s', sep=',', position=2, minlen=3, maxlen=3, desc='Three comma-separated numbers giving the size of each voxel in mm.') colour = traits.Bool(argstr='-colour', position=3, desc="add colour to the output image according to the direction of the tracks.") fraction = traits.Bool(argstr='-fraction', position=3, desc="produce an image of the fraction of fibres through each voxel (as a proportion of the total number in the file), rather than the count.") output_datatype = traits.Enum("Bit","Int8", "UInt8","Int16", "UInt16","Int32", "UInt32", "float32", "float64", argstr='-datatype %s', position=2, desc='"i.e. Bfloat". Can be "char", "short", "int", "long", "float" or "double"') #, usedefault=True) resample = traits.Float(argstr='-resample %d', position=3, units='mm', desc='resample the tracks at regular intervals using Hermite interpolation. If omitted, the program will select an appropriate interpolation factor automatically.') out_filename = File(genfile=True, argstr='%s', position= -1, desc='output data file') class Tracks2ProbOutputSpec(TraitedSpec): tract_image = File(exists=True, desc='Output tract count or track density image') class Tracks2Prob(CommandLine): """ Convert a tract file into a map of the fraction of tracks to enter each voxel - also known as a tract density image (TDI) - in MRtrix's image format (.mif). This can be viewed using MRview or converted to Nifti using MRconvert. Example ------- >>> import nipype.interfaces.mrtrix as mrt >>> tdi = mrt.Tracks2Prob() >>> tdi.inputs.in_file = 'dwi_CSD_tracked.tck' >>> tdi.inputs.colour = True >>> tdi.run() # doctest: +SKIP """ _cmd = 'tracks2prob' input_spec=Tracks2ProbInputSpec output_spec=Tracks2ProbOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['tract_image'] = self.inputs.out_filename if not isdefined(outputs['tract_image']): outputs['tract_image'] = op.abspath(self._gen_outfilename()) else: outputs['tract_image'] = os.path.abspath(outputs['tract_image']) return outputs def _gen_filename(self, name): if name is 'out_filename': return self._gen_outfilename() else: return None def _gen_outfilename(self): _, name , _ = split_filename(self.inputs.in_file) return name + '_TDI.mif' class StreamlineTrackInputSpec(CommandLineInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-2, desc='the image containing the source data.' \ 'The type of data required depends on the type of tracking as set in the preceeding argument. For DT methods, ' \ 'the base DWI are needed. For SD methods, the SH harmonic coefficients of the FOD are needed.') seed_file = File(exists=True, argstr='-seed %s', position=2, desc='seed file') seed_spec = traits.List(traits.Float, desc='seed specification in mm and radius (x y z r)', position=2, argstr='-seed %s', minlen=4, maxlen=4, sep=',', units='mm') include_file = File(exists=True, argstr='-include %s', position=2, desc='inclusion file') include_spec = traits.List(traits.Float, desc='inclusion specification in mm and radius (x y z r)', position=2, argstr='-seed %s', minlen=4, maxlen=4, sep=',', units='mm') exclude_file = File(exists=True, argstr='-exclude %s', position=2, desc='exclusion file') exclude_spec = traits.List(traits.Float, desc='exclusion specification in mm and radius (x y z r)', position=2, argstr='-seed %s', minlen=4, maxlen=4, sep=',', units='mm') mask_file = File(exists=True, argstr='-exclude %s', position=2, desc='mask file. Only tracks within mask.') mask_spec = traits.List(traits.Float, desc='Mask specification in mm and radius (x y z r). Tracks will be terminated when they leave the ROI.', position=2, argstr='-seed %s', minlen=4, maxlen=4, sep=',', units='mm') inputmodel = traits.Enum('DT_STREAM', 'SD_PROB', 'SD_STREAM', argstr='%s', desc='input model type', usedefault=True, position=-3) stop = traits.Bool(argstr='-gzip', desc="stop track as soon as it enters any of the include regions.") do_not_precompute = traits.Bool(argstr='-noprecomputed', desc="Turns off precomputation of the legendre polynomial values. Warning: this will slow down the algorithm by a factor of approximately 4.") unidirectional = traits.Bool(argstr='-unidirectional', desc="Track from the seed point in one direction only (default is to track in both directions).") no_mask_interpolation = traits.Bool(argstr='-nomaskinterp', desc="Turns off trilinear interpolation of mask images.") step_size = traits.Float(argstr='-step %s', units='mm', desc="Set the step size of the algorithm in mm (default is 0.2).") minimum_radius_of_curvature = traits.Float(argstr='-curvature %s', units='mm', desc="Set the minimum radius of curvature (default is 2 mm for DT_STREAM, 0 for SD_STREAM, 1 mm for SD_PROB and DT_PROB)") desired_number_of_tracks = traits.Int(argstr='-number %d', desc='Sets the desired number of tracks.' \ 'The program will continue to generate tracks until this number of tracks have been selected and written to the output file' \ '(default is 100 for *_STREAM methods, 1000 for *_PROB methods).') maximum_number_of_tracks = traits.Int(argstr='-maxnum %d', desc='Sets the maximum number of tracks to generate.' \ "The program will not generate more tracks than this number, even if the desired number of tracks hasn't yet been reached" \ '(default is 100 x number).') minimum_tract_length = traits.Float(argstr='-minlength %s', units='mm', desc="Sets the minimum length of any track in millimeters (default is 10 mm).") maximum_tract_length = traits.Float(argstr='-length %s', units='mm', desc="Sets the maximum length of any track in millimeters (default is 200 mm).") cutoff_value = traits.Float(argstr='-cutoff %s', units='NA', desc="Set the FA or FOD amplitude cutoff for terminating tracks (default is 0.1).") initial_cutoff_value = traits.Float(argstr='-initcutoff %s', units='NA', desc="Sets the minimum FA or FOD amplitude for initiating tracks (default is twice the normal cutoff).") initial_direction = traits.List(traits.Int, desc='Specify the initial tracking direction as a vector', argstr='-initdirection %s', minlen=2, maxlen=2, units='voxels') out_file = File(argstr='%s', position= -1, genfile=True, desc='output data file') class StreamlineTrackOutputSpec(TraitedSpec): tracked = File(exists=True, desc='output file containing reconstructed tracts') class StreamlineTrack(CommandLine): """ Performs tractography using one of the following models: 'dt_prob', 'dt_stream', 'sd_prob', 'sd_stream', Where 'dt' stands for diffusion tensor, 'sd' stands for spherical deconvolution, and 'prob' stands for probabilistic. Example ------- >>> import nipype.interfaces.mrtrix as mrt >>> strack = mrt.StreamlineTrack() >>> strack.inputs.inputmodel = 'SD_PROB' >>> strack.inputs.in_file = 'data.Bfloat' >>> strack.inputs.seed_file = 'seed_mask.nii' >>> strack.run() # doctest: +SKIP """ _cmd = 'streamtrack' input_spec = StreamlineTrackInputSpec output_spec = StreamlineTrackOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['tracked'] = op.abspath(self._gen_outfilename()) return outputs def _gen_filename(self, name): if name is 'out_file': return self._gen_outfilename() else: return None def _gen_outfilename(self): _, name , _ = split_filename(self.inputs.in_file) return name + '_tracked.tck' class DiffusionTensorStreamlineTrackInputSpec(StreamlineTrackInputSpec): gradient_encoding_file = File(exists=True, argstr='-grad %s', mandatory=True, position=-2, desc='Gradient encoding, supplied as a 4xN text file with each line is in the format [ X Y Z b ], where [ X Y Z ] describe the direction of the applied gradient, and b gives the b-value in units (1000 s/mm^2). See FSL2MRTrix') class DiffusionTensorStreamlineTrack(StreamlineTrack): """ Specialized interface to StreamlineTrack. This interface is used for streamline tracking from diffusion tensor data, and calls the MRtrix function 'streamtrack' with the option 'DT_STREAM' Example ------- >>> import nipype.interfaces.mrtrix as mrt >>> dtstrack = mrt.DiffusionTensorStreamlineTrack() >>> dtstrack.inputs.in_file = 'data.Bfloat' >>> dtstrack.inputs.seed_file = 'seed_mask.nii' >>> dtstrack.run() # doctest: +SKIP """ input_spec = DiffusionTensorStreamlineTrackInputSpec def __init__(self, command=None, **inputs): inputs["inputmodel"] = "DT_STREAM" return super(DiffusionTensorStreamlineTrack, self).__init__(command, **inputs) class ProbabilisticSphericallyDeconvolutedStreamlineTrackInputSpec(StreamlineTrackInputSpec): maximum_number_of_trials = traits.Int(argstr='-trials %s', desc="Set the maximum number of sampling trials at each point (only used for probabilistic tracking).") class ProbabilisticSphericallyDeconvolutedStreamlineTrack(StreamlineTrack): """ Performs probabilistic tracking using spherically deconvolved data Specialized interface to StreamlineTrack. This interface is used for probabilistic tracking from spherically deconvolved data, and calls the MRtrix function 'streamtrack' with the option 'SD_PROB' Example ------- >>> import nipype.interfaces.mrtrix as mrt >>> sdprobtrack = mrt.ProbabilisticSphericallyDeconvolutedStreamlineTrack() >>> sdprobtrack.inputs.in_file = 'data.Bfloat' >>> sdprobtrack.inputs.seed_file = 'seed_mask.nii' >>> sdprobtrack.run() # doctest: +SKIP """ input_spec = ProbabilisticSphericallyDeconvolutedStreamlineTrackInputSpec def __init__(self, command=None, **inputs): inputs["inputmodel"] = "SD_PROB" return super(ProbabilisticSphericallyDeconvolutedStreamlineTrack, self).__init__(command, **inputs) class SphericallyDeconvolutedStreamlineTrack(StreamlineTrack): """ Performs streamline tracking using spherically deconvolved data Specialized interface to StreamlineTrack. This interface is used for streamline tracking from spherically deconvolved data, and calls the MRtrix function 'streamtrack' with the option 'SD_STREAM' Example ------- >>> import nipype.interfaces.mrtrix as mrt >>> sdtrack = mrt.SphericallyDeconvolutedStreamlineTrack() >>> sdtrack.inputs.in_file = 'data.Bfloat' >>> sdtrack.inputs.seed_file = 'seed_mask.nii' >>> sdtrack.run() # doctest: +SKIP """ input_spec = StreamlineTrackInputSpec def __init__(self, command=None, **inputs): inputs["inputmodel"] = "SD_STREAM" return super(SphericallyDeconvolutedStreamlineTrack, self).__init__(command, **inputs)