////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// // Copyright (c) 1996,1997 // Silicon Graphics Computer Systems, Inc. // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Silicon Graphics makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. // // // Copyright (c) 1994 // Hewlett-Packard Company // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Hewlett-Packard Company makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. #ifndef BOOST_CONTAINERS_DEQUE_HPP #define BOOST_CONTAINERS_DEQUE_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace container { /// @cond #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template > #else template #endif class deque; template struct deque_value_traits { typedef T value_type; typedef A allocator_type; static const bool trivial_dctr = boost::has_trivial_destructor::value; static const bool trivial_dctr_after_move = false; //::boost::has_trivial_destructor_after_move::value || trivial_dctr; static const bool trivial_copy = has_trivial_copy::value; static const bool nothrow_copy = has_nothrow_copy::value; static const bool trivial_assign = has_trivial_assign::value; static const bool nothrow_assign = has_nothrow_assign::value; }; // Note: this function is simply a kludge to work around several compilers' // bugs in handling constant expressions. inline std::size_t deque_buf_size(std::size_t size) { return size < 512 ? std::size_t(512 / size) : std::size_t(1); } // Deque base class. It has two purposes. First, its constructor // and destructor allocate (but don't initialize) storage. This makes // exception safety easier. template class deque_base { public: typedef typename A::value_type val_alloc_val; typedef typename A::pointer val_alloc_ptr; typedef typename A::const_pointer val_alloc_cptr; typedef typename A::reference val_alloc_ref; typedef typename A::const_reference val_alloc_cref; typedef typename A::difference_type val_alloc_diff; typedef typename A::size_type val_alloc_size; typedef typename A::template rebind ::other ptr_alloc_t; typedef typename ptr_alloc_t::value_type ptr_alloc_val; typedef typename ptr_alloc_t::pointer ptr_alloc_ptr; typedef typename ptr_alloc_t::const_pointer ptr_alloc_cptr; typedef typename ptr_alloc_t::reference ptr_alloc_ref; typedef typename ptr_alloc_t::const_reference ptr_alloc_cref; typedef typename A::template rebind::other allocator_type; typedef allocator_type stored_allocator_type; typedef val_alloc_size size_type; protected: typedef deque_value_traits traits_t; typedef typename A::template rebind::other map_allocator_type; static size_type s_buffer_size() { return deque_buf_size(sizeof(T)); } val_alloc_ptr priv_allocate_node() { return this->alloc().allocate(s_buffer_size()); } void priv_deallocate_node(val_alloc_ptr p) { this->alloc().deallocate(p, s_buffer_size()); } ptr_alloc_ptr priv_allocate_map(size_type n) { return this->ptr_alloc().allocate(n); } void priv_deallocate_map(ptr_alloc_ptr p, size_type n) { this->ptr_alloc().deallocate(p, n); } public: // Class invariants: // For any nonsingular iterator i: // i.node is the address of an element in the map array. The // contents of i.node is a pointer to the beginning of a node. // i.first == //(i.node) // i.last == i.first + node_size // i.cur is a pointer in the range [i.first, i.last). NOTE: // the implication of this is that i.cur is always a dereferenceable // pointer, even if i is a past-the-end iterator. // Start and Finish are always nonsingular iterators. NOTE: this means // that an empty deque must have one node, and that a deque // with N elements, where N is the buffer size, must have two nodes. // For every node other than start.node and finish.node, every element // in the node is an initialized object. If start.node == finish.node, // then [start.cur, finish.cur) are initialized objects, and // the elements outside that range are uninitialized storage. Otherwise, // [start.cur, start.last) and [finish.first, finish.cur) are initialized // objects, and [start.first, start.cur) and [finish.cur, finish.last) // are uninitialized storage. // [map, map + map_size) is a valid, non-empty range. // [start.node, finish.node] is a valid range contained within // [map, map + map_size). // A pointer in the range [map, map + map_size) points to an allocated node // if and only if the pointer is in the range [start.node, finish.node]. class const_iterator : public std::iterator { public: static size_type s_buffer_size() { return deque_base::s_buffer_size(); } typedef std::random_access_iterator_tag iterator_category; typedef val_alloc_val value_type; typedef val_alloc_cptr pointer; typedef val_alloc_cref reference; typedef val_alloc_diff difference_type; typedef ptr_alloc_ptr index_pointer; typedef const_iterator self_t; friend class deque; friend class deque_base; protected: val_alloc_ptr m_cur; val_alloc_ptr m_first; val_alloc_ptr m_last; index_pointer m_node; public: const_iterator(val_alloc_ptr x, index_pointer y) : m_cur(x), m_first(*y), m_last(*y + s_buffer_size()), m_node(y) {} const_iterator() : m_cur(0), m_first(0), m_last(0), m_node(0) {} const_iterator(const const_iterator& x) : m_cur(x.m_cur), m_first(x.m_first), m_last(x.m_last), m_node(x.m_node) {} reference operator*() const { return *this->m_cur; } pointer operator->() const { return this->m_cur; } difference_type operator-(const self_t& x) const { if(!this->m_cur && !x.m_cur){ return 0; } return difference_type(this->s_buffer_size()) * (this->m_node - x.m_node - 1) + (this->m_cur - this->m_first) + (x.m_last - x.m_cur); } self_t& operator++() { ++this->m_cur; if (this->m_cur == this->m_last) { this->priv_set_node(this->m_node + 1); this->m_cur = this->m_first; } return *this; } self_t operator++(int) { self_t tmp = *this; ++*this; return tmp; } self_t& operator--() { if (this->m_cur == this->m_first) { this->priv_set_node(this->m_node - 1); this->m_cur = this->m_last; } --this->m_cur; return *this; } self_t operator--(int) { self_t tmp = *this; --*this; return tmp; } self_t& operator+=(difference_type n) { difference_type offset = n + (this->m_cur - this->m_first); if (offset >= 0 && offset < difference_type(this->s_buffer_size())) this->m_cur += n; else { difference_type node_offset = offset > 0 ? offset / difference_type(this->s_buffer_size()) : -difference_type((-offset - 1) / this->s_buffer_size()) - 1; this->priv_set_node(this->m_node + node_offset); this->m_cur = this->m_first + (offset - node_offset * difference_type(this->s_buffer_size())); } return *this; } self_t operator+(difference_type n) const { self_t tmp = *this; return tmp += n; } self_t& operator-=(difference_type n) { return *this += -n; } self_t operator-(difference_type n) const { self_t tmp = *this; return tmp -= n; } reference operator[](difference_type n) const { return *(*this + n); } bool operator==(const self_t& x) const { return this->m_cur == x.m_cur; } bool operator!=(const self_t& x) const { return !(*this == x); } bool operator<(const self_t& x) const { return (this->m_node == x.m_node) ? (this->m_cur < x.m_cur) : (this->m_node < x.m_node); } bool operator>(const self_t& x) const { return x < *this; } bool operator<=(const self_t& x) const { return !(x < *this); } bool operator>=(const self_t& x) const { return !(*this < x); } void priv_set_node(index_pointer new_node) { this->m_node = new_node; this->m_first = *new_node; this->m_last = this->m_first + difference_type(this->s_buffer_size()); } friend const_iterator operator+(difference_type n, const const_iterator& x) { return x + n; } }; //Deque iterator class iterator : public const_iterator { public: typedef std::random_access_iterator_tag iterator_category; typedef val_alloc_val value_type; typedef val_alloc_ptr pointer; typedef val_alloc_ref reference; typedef val_alloc_diff difference_type; typedef ptr_alloc_ptr index_pointer; typedef const_iterator self_t; friend class deque; friend class deque_base; private: explicit iterator(const const_iterator& x) : const_iterator(x){} public: //Constructors iterator(val_alloc_ptr x, index_pointer y) : const_iterator(x, y){} iterator() : const_iterator(){} //iterator(const const_iterator &cit) : const_iterator(cit){} iterator(const iterator& x) : const_iterator(x){} //Pointer like operators reference operator*() const { return *this->m_cur; } pointer operator->() const { return this->m_cur; } reference operator[](difference_type n) const { return *(*this + n); } //Increment / Decrement iterator& operator++() { this->const_iterator::operator++(); return *this; } iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; } iterator& operator--() { this->const_iterator::operator--(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } // Arithmetic iterator& operator+=(difference_type off) { this->const_iterator::operator+=(off); return *this; } iterator operator+(difference_type off) const { return iterator(this->const_iterator::operator+(off)); } friend iterator operator+(difference_type off, const iterator& right) { return iterator(off+static_cast(right)); } iterator& operator-=(difference_type off) { this->const_iterator::operator-=(off); return *this; } iterator operator-(difference_type off) const { return iterator(this->const_iterator::operator-(off)); } difference_type operator-(const const_iterator& right) const { return static_cast(*this) - right; } }; deque_base(const allocator_type& a, size_type num_elements) : members_(a) { this->priv_initialize_map(num_elements); } deque_base(const allocator_type& a) : members_(a) {} ~deque_base() { if (this->members_.m_map) { this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); } } private: deque_base(const deque_base&); protected: void priv_initialize_map(size_type num_elements) { // if(num_elements){ size_type num_nodes = num_elements / s_buffer_size() + 1; this->members_.m_map_size = containers_detail::max_value((size_type) InitialMapSize, num_nodes + 2); this->members_.m_map = this->priv_allocate_map(this->members_.m_map_size); ptr_alloc_ptr nstart = this->members_.m_map + (this->members_.m_map_size - num_nodes) / 2; ptr_alloc_ptr nfinish = nstart + num_nodes; BOOST_TRY { this->priv_create_nodes(nstart, nfinish); } BOOST_CATCH(...){ this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = 0; this->members_.m_map_size = 0; BOOST_RETHROW } BOOST_CATCH_END this->members_.m_start.priv_set_node(nstart); this->members_.m_finish.priv_set_node(nfinish - 1); this->members_.m_start.m_cur = this->members_.m_start.m_first; this->members_.m_finish.m_cur = this->members_.m_finish.m_first + num_elements % s_buffer_size(); // } } void priv_create_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) { ptr_alloc_ptr cur; BOOST_TRY { for (cur = nstart; cur < nfinish; ++cur) *cur = this->priv_allocate_node(); } BOOST_CATCH(...){ this->priv_destroy_nodes(nstart, cur); BOOST_RETHROW } BOOST_CATCH_END } void priv_destroy_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) { for (ptr_alloc_ptr n = nstart; n < nfinish; ++n) this->priv_deallocate_node(*n); } void priv_clear_map() { if (this->members_.m_map) { this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = 0; this->members_.m_map_size = 0; this->members_.m_start = iterator(); this->members_.m_finish = this->members_.m_start; } } enum { InitialMapSize = 8 }; protected: struct members_holder : public ptr_alloc_t , public allocator_type { members_holder(const allocator_type &a) : map_allocator_type(a), allocator_type(a) , m_map(0), m_map_size(0) , m_start(), m_finish(m_start) {} ptr_alloc_ptr m_map; typename allocator_type::size_type m_map_size; iterator m_start; iterator m_finish; } members_; ptr_alloc_t &ptr_alloc() { return members_; } const ptr_alloc_t &ptr_alloc() const { return members_; } allocator_type &alloc() { return members_; } const allocator_type &alloc() const { return members_; } }; /// @endcond //! Deque class //! #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template > #else template #endif class deque : protected deque_base { /// @cond typedef deque_base Base; public: // Basic types typedef typename A::value_type val_alloc_val; typedef typename A::pointer val_alloc_ptr; typedef typename A::const_pointer val_alloc_cptr; typedef typename A::reference val_alloc_ref; typedef typename A::const_reference val_alloc_cref; typedef typename A::size_type val_alloc_size; typedef typename A::difference_type val_alloc_diff; typedef typename A::template rebind::other ptr_alloc_t; typedef typename ptr_alloc_t::value_type ptr_alloc_val; typedef typename ptr_alloc_t::pointer ptr_alloc_ptr; typedef typename ptr_alloc_t::const_pointer ptr_alloc_cptr; typedef typename ptr_alloc_t::reference ptr_alloc_ref; typedef typename ptr_alloc_t::const_reference ptr_alloc_cref; /// @endcond typedef T value_type; typedef val_alloc_ptr pointer; typedef val_alloc_cptr const_pointer; typedef val_alloc_ref reference; typedef val_alloc_cref const_reference; typedef val_alloc_size size_type; typedef val_alloc_diff difference_type; typedef typename Base::allocator_type allocator_type; public: // Iterators typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; /// @cond private: // Internal typedefs BOOST_COPYABLE_AND_MOVABLE(deque) typedef ptr_alloc_ptr index_pointer; static size_type s_buffer_size() { return Base::s_buffer_size(); } typedef containers_detail::advanced_insert_aux_int advanced_insert_aux_int_t; typedef repeat_iterator r_iterator; typedef boost::move_iterator move_it; /// @endcond //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const { return Base::alloc(); } public: // Basic accessors //! Effects: Returns an iterator to the first element contained in the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return this->members_.m_start; } //! Effects: Returns an iterator to the end of the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return this->members_.m_finish; } //! Effects: Returns a const_iterator to the first element contained in the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return this->members_.m_start; } //! Effects: Returns a const_iterator to the end of the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return this->members_.m_finish; } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed deque. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return reverse_iterator(this->members_.m_finish); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed deque. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return reverse_iterator(this->members_.m_start); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return const_reverse_iterator(this->members_.m_finish); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return const_reverse_iterator(this->members_.m_start); } //! Effects: Returns a const_iterator to the first element contained in the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return this->members_.m_start; } //! Effects: Returns a const_iterator to the end of the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return this->members_.m_finish; } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return const_reverse_iterator(this->members_.m_finish); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed deque. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return const_reverse_iterator(this->members_.m_start); } //! Requires: size() < n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference operator[](size_type n) { return this->members_.m_start[difference_type(n)]; } //! Requires: size() < n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference operator[](size_type n) const { return this->members_.m_start[difference_type(n)]; } //! Requires: size() < n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. reference at(size_type n) { this->priv_range_check(n); return (*this)[n]; } //! Requires: size() < n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. const_reference at(size_type n) const { this->priv_range_check(n); return (*this)[n]; } //! Requires: !empty() //! //! Effects: Returns a reference to the first //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *this->members_.m_start; } //! Requires: !empty() //! //! Effects: Returns a const reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *this->members_.m_start; } //! Requires: !empty() //! //! Effects: Returns a reference to the last //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference back() { return *(end()-1); } //! Requires: !empty() //! //! Effects: Returns a const reference to the last //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference back() const { return *(cend()-1); } //! Effects: Returns the number of the elements contained in the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return this->members_.m_finish - this->members_.m_start; } //! Effects: Returns the largest possible size of the deque. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return this->alloc().max_size(); } //! Effects: Returns true if the deque contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return this->members_.m_finish == this->members_.m_start; } //! Effects: Constructs a deque taking the allocator as parameter. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. explicit deque(const allocator_type& a = allocator_type()) : Base(a) {} //! Effects: Constructs a deque that will use a copy of allocator a //! and inserts n default contructed values. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! Complexity: Linear to n. explicit deque(size_type n) : Base(allocator_type(), n) { containers_detail::default_construct_aux_proxy proxy(n); proxy.uninitialized_copy_all_to(this->begin()); //deque_base will deallocate in case of exception... } //! Effects: Constructs a deque that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! Complexity: Linear to n. deque(size_type n, const value_type& value, const allocator_type& a = allocator_type()) : Base(a, n) { this->priv_fill_initialize(value); } //! Effects: Copy constructs a deque. //! //! Postcondition: x == *this. //! //! Complexity: Linear to the elements x contains. deque(const deque& x) : Base(x.alloc()) { if(x.size()){ this->priv_initialize_map(x.size()); std::uninitialized_copy(x.begin(), x.end(), this->members_.m_start); } } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. deque(BOOST_RV_REF(deque) mx) : Base(mx.alloc()) { this->swap(mx); } //! Effects: Constructs a deque that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the deque. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). template deque(InpIt first, InpIt last, const allocator_type& a = allocator_type()) : Base(a) { //Dispatch depending on integer/iterator const bool aux_boolean = containers_detail::is_convertible::value; typedef containers_detail::bool_ Result; this->priv_initialize_dispatch(first, last, Result()); } //! Effects: Destroys the deque. All stored values are destroyed //! and used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements. ~deque() { priv_destroy_range(this->members_.m_start, this->members_.m_finish); } //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to the number of elements in x. deque& operator= (BOOST_COPY_ASSIGN_REF(deque) x) { const size_type len = size(); if (&x != this) { if (len >= x.size()) this->erase(std::copy(x.begin(), x.end(), this->members_.m_start), this->members_.m_finish); else { const_iterator mid = x.begin() + difference_type(len); std::copy(x.begin(), mid, this->members_.m_start); this->insert(this->members_.m_finish, mid, x.end()); } } return *this; } //! Effects: Move assignment. All mx's values are transferred to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Linear. deque& operator= (BOOST_RV_REF(deque) x) { this->clear(); this->swap(x); return *this; } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(deque &x) { std::swap(this->members_.m_start, x.members_.m_start); std::swap(this->members_.m_finish, x.members_.m_finish); std::swap(this->members_.m_map, x.members_.m_map); std::swap(this->members_.m_map_size, x.members_.m_map_size); } //! Effects: Assigns the n copies of val to *this. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void assign(size_type n, const T& val) { this->priv_fill_assign(n, val); } //! Effects: Assigns the the range [first, last) to *this. //! //! Throws: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(InpIt first, InpIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = containers_detail::is_convertible::value; typedef containers_detail::bool_ Result; this->priv_assign_dispatch(first, last, Result()); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x at the end of the deque. //! //! Throws: If memory allocation throws or //! T's copy constructor throws. //! //! Complexity: Amortized constant time. void push_back(const T &x); //! Effects: Constructs a new element in the end of the deque //! and moves the resources of mx to this new element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. void push_back(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x at the front of the deque. //! //! Throws: If memory allocation throws or //! T's copy constructor throws. //! //! Complexity: Amortized constant time. void push_front(const T &x); //! Effects: Constructs a new element in the front of the deque //! and moves the resources of mx to this new element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. void push_front(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front) #endif //! Effects: Removes the last element from the deque. //! //! Throws: Nothing. //! //! Complexity: Constant time. void pop_back() { if (this->members_.m_finish.m_cur != this->members_.m_finish.m_first) { --this->members_.m_finish.m_cur; containers_detail::get_pointer(this->members_.m_finish.m_cur)->~value_type(); } else this->priv_pop_back_aux(); } //! Effects: Removes the first element from the deque. //! //! Throws: Nothing. //! //! Complexity: Constant time. void pop_front() { if (this->members_.m_start.m_cur != this->members_.m_start.m_last - 1) { containers_detail::get_pointer(this->members_.m_start.m_cur)->~value_type(); ++this->members_.m_start.m_cur; } else this->priv_pop_front_aux(); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a copy of x before position. //! //! Throws: If memory allocation throws or x's copy constructor throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator position, const T &x); //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a new element before position with mx's resources. //! //! Throws: If memory allocation throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator position, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator) #endif //! Requires: pos must be a valid iterator of *this. //! //! Effects: Insert n copies of x before pos. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void insert(const_iterator pos, size_type n, const value_type& x) { this->priv_fill_insert(pos, n, x); } //! Requires: pos must be a valid iterator of *this. //! //! Effects: Insert a copy of the [first, last) range before pos. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws or T's copy constructor throws. //! //! Complexity: Linear to std::distance [first, last). template void insert(const_iterator pos, InpIt first, InpIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = containers_detail::is_convertible::value; typedef containers_detail::bool_ Result; this->priv_insert_dispatch(pos, first, last, Result()); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the end of the deque. //! //! Throws: If memory allocation throws or the in-place constructor throws. //! //! Complexity: Amortized constant time template void emplace_back(Args&&... args) { if(this->priv_push_back_simple_available()){ new(this->priv_push_back_simple_pos())value_type(boost::forward(args)...); this->priv_push_back_simple_commit(); } else{ typedef containers_detail::advanced_insert_aux_emplace type; type &&proxy = type(boost::forward(args)...); this->priv_insert_aux_impl(this->cend(), 1, proxy); } } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the beginning of the deque. //! //! Throws: If memory allocation throws or the in-place constructor throws. //! //! Complexity: Amortized constant time template void emplace_front(Args&&... args) { if(this->priv_push_front_simple_available()){ new(this->priv_push_front_simple_pos())value_type(boost::forward(args)...); this->priv_push_front_simple_commit(); } else{ typedef containers_detail::advanced_insert_aux_emplace type; type &&proxy = type(boost::forward(args)...); this->priv_insert_aux_impl(this->cbegin(), 1, proxy); } } //! Requires: position must be a valid iterator of *this. //! //! Effects: Inserts an object of type T constructed with //! std::forward(args)... before position //! //! Throws: If memory allocation throws or the in-place constructor throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. template iterator emplace(const_iterator p, Args&&... args) { if(p == this->cbegin()){ this->emplace_front(boost::forward(args)...); return this->begin(); } else if(p == this->cend()){ this->emplace_back(boost::forward(args)...); return (this->end()-1); } else{ size_type n = p - this->cbegin(); typedef containers_detail::advanced_insert_aux_emplace type; type &&proxy = type(boost::forward(args)...); this->priv_insert_aux_impl(p, 1, proxy); return iterator(this->begin() + n); } } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //0 args void emplace_back() { if(priv_push_front_simple_available()){ new(priv_push_front_simple_pos())value_type(); priv_push_front_simple_commit(); } else{ containers_detail::advanced_insert_aux_emplace proxy; priv_insert_aux_impl(cend(), 1, proxy); } } void emplace_front() { if(priv_push_front_simple_available()){ new(priv_push_front_simple_pos())value_type(); priv_push_front_simple_commit(); } else{ containers_detail::advanced_insert_aux_emplace proxy; priv_insert_aux_impl(cbegin(), 1, proxy); } } iterator emplace(const_iterator p) { if(p == cbegin()){ emplace_front(); return begin(); } else if(p == cend()){ emplace_back(); return (end()-1); } else{ size_type n = p - cbegin(); containers_detail::advanced_insert_aux_emplace proxy; priv_insert_aux_impl(p, 1, proxy); return iterator(this->begin() + n); } } //advanced_insert_int.hpp includes all necessary preprocessor machinery... #define BOOST_PP_LOCAL_MACRO(n) \ template \ void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ if(priv_push_back_simple_available()){ \ new(priv_push_back_simple_pos())value_type \ (BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ priv_push_back_simple_commit(); \ } \ else{ \ containers_detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \ \ proxy(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ priv_insert_aux_impl(cend(), 1, proxy); \ } \ } \ \ template \ void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ if(priv_push_front_simple_available()){ \ new(priv_push_front_simple_pos())value_type \ (BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ priv_push_front_simple_commit(); \ } \ else{ \ containers_detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \ \ proxy(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ priv_insert_aux_impl(cbegin(), 1, proxy); \ } \ } \ \ template \ iterator emplace(const_iterator p, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ if(p == this->cbegin()){ \ this->emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ return this->begin(); \ } \ else if(p == cend()){ \ this->emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ return (this->end()-1); \ } \ else{ \ size_type pos_num = p - this->cbegin(); \ containers_detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \ \ proxy(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ this->priv_insert_aux_impl(p, 1, proxy); \ return iterator(this->begin() + pos_num); \ } \ } \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size, const value_type& x) { const size_type len = size(); if (new_size < len) this->erase(this->members_.m_start + new_size, this->members_.m_finish); else this->insert(this->members_.m_finish, new_size - len, x); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size) { const size_type len = size(); if (new_size < len) this->erase(this->members_.m_start + new_size, this->members_.m_finish); else{ size_type n = new_size - this->size(); containers_detail::default_construct_aux_proxy proxy(n); priv_insert_aux_impl(this->cend(), n, proxy); } } //! Effects: Erases the element at position pos. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements between pos and the //! last element (if pos is near the end) or the first element //! if(pos is near the beginning). //! Constant if pos is the first or the last element. iterator erase(const_iterator pos) { const_iterator next = pos; ++next; difference_type index = pos - this->members_.m_start; if (size_type(index) < (this->size() >> 1)) { boost::move_backward(begin(), iterator(pos), iterator(next)); pop_front(); } else { boost::move(iterator(next), end(), iterator(pos)); pop_back(); } return this->members_.m_start + index; } //! Effects: Erases the elements pointed by [first, last). //! //! Throws: Nothing. //! //! Complexity: Linear to the distance between first and //! last plus the elements between pos and the //! last element (if pos is near the end) or the first element //! if(pos is near the beginning). iterator erase(const_iterator first, const_iterator last) { if (first == this->members_.m_start && last == this->members_.m_finish) { this->clear(); return this->members_.m_finish; } else { difference_type n = last - first; difference_type elems_before = first - this->members_.m_start; if (elems_before < static_cast(this->size() - n) - elems_before) { boost::move_backward(begin(), iterator(first), iterator(last)); iterator new_start = this->members_.m_start + n; if(!Base::traits_t::trivial_dctr_after_move) this->priv_destroy_range(this->members_.m_start, new_start); this->priv_destroy_nodes(this->members_.m_start.m_node, new_start.m_node); this->members_.m_start = new_start; } else { boost::move(iterator(last), end(), iterator(first)); iterator new_finish = this->members_.m_finish - n; if(!Base::traits_t::trivial_dctr_after_move) this->priv_destroy_range(new_finish, this->members_.m_finish); this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1); this->members_.m_finish = new_finish; } return this->members_.m_start + elems_before; } } //! Effects: Erases all the elements of the deque. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the deque. void clear() { for (index_pointer node = this->members_.m_start.m_node + 1; node < this->members_.m_finish.m_node; ++node) { this->priv_destroy_range(*node, *node + this->s_buffer_size()); this->priv_deallocate_node(*node); } if (this->members_.m_start.m_node != this->members_.m_finish.m_node) { this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_start.m_last); this->priv_destroy_range(this->members_.m_finish.m_first, this->members_.m_finish.m_cur); this->priv_deallocate_node(this->members_.m_finish.m_first); } else this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_finish.m_cur); this->members_.m_finish = this->members_.m_start; } //! Effects: Tries to deallocate the excess of memory created //! with previous allocations. The size of the deque is unchanged //! //! Throws: If memory allocation throws. //! //! Complexity: Constant. void shrink_to_fit() { //This deque implementation already //deallocates excess nodes when erasing //so there is nothing to do except for //empty deque if(this->empty()){ this->priv_clear_map(); } } /// @cond private: void priv_range_check(size_type n) const { if (n >= this->size()) BOOST_RETHROW std::out_of_range("deque"); } iterator priv_insert(const_iterator position, const value_type &x) { if (position == cbegin()){ this->push_front(x); return begin(); } else if (position == cend()){ this->push_back(x); return (end()-1); } else { size_type n = position - cbegin(); this->priv_insert_aux(position, size_type(1), x); return iterator(this->begin() + n); } } iterator priv_insert(const_iterator position, BOOST_RV_REF(value_type) mx) { if (position == cbegin()) { this->push_front(boost::move(mx)); return begin(); } else if (position == cend()) { this->push_back(boost::move(mx)); return(end()-1); } else { //Just call more general insert(pos, size, value) and return iterator size_type n = position - begin(); this->priv_insert_aux(position, move_it(r_iterator(mx, 1)), move_it(r_iterator())); return iterator(this->begin() + n); } } void priv_push_front(const value_type &t) { if(this->priv_push_front_simple_available()){ new(this->priv_push_front_simple_pos())value_type(t); this->priv_push_front_simple_commit(); } else{ this->priv_insert_aux(cbegin(), size_type(1), t); } } void priv_push_front(BOOST_RV_REF(value_type) t) { if(this->priv_push_front_simple_available()){ new(this->priv_push_front_simple_pos())value_type(boost::move(t)); this->priv_push_front_simple_commit(); } else{ this->priv_insert_aux(cbegin(), move_it(r_iterator(t, 1)), move_it(r_iterator())); } } void priv_push_back(const value_type &t) { if(this->priv_push_back_simple_available()){ new(this->priv_push_back_simple_pos())value_type(t); this->priv_push_back_simple_commit(); } else{ this->priv_insert_aux(cend(), size_type(1), t); } } void priv_push_back(BOOST_RV_REF(T) t) { if(this->priv_push_back_simple_available()){ new(this->priv_push_back_simple_pos())value_type(boost::move(t)); this->priv_push_back_simple_commit(); } else{ this->priv_insert_aux(cend(), move_it(r_iterator(t, 1)), move_it(r_iterator())); } } bool priv_push_back_simple_available() const { return this->members_.m_map && (this->members_.m_finish.m_cur != (this->members_.m_finish.m_last - 1)); } void *priv_push_back_simple_pos() const { return static_cast(containers_detail::get_pointer(this->members_.m_finish.m_cur)); } void priv_push_back_simple_commit() { ++this->members_.m_finish.m_cur; } bool priv_push_front_simple_available() const { return this->members_.m_map && (this->members_.m_start.m_cur != this->members_.m_start.m_first); } void *priv_push_front_simple_pos() const { return static_cast(containers_detail::get_pointer(this->members_.m_start.m_cur) - 1); } void priv_push_front_simple_commit() { --this->members_.m_start.m_cur; } template void priv_insert_aux(const_iterator pos, InpIt first, InpIt last, std::input_iterator_tag) { for(;first != last; ++first){ this->insert(pos, boost::move(value_type(*first))); } } template void priv_insert_aux(const_iterator pos, FwdIt first, FwdIt last, std::forward_iterator_tag) { this->priv_insert_aux(pos, first, last); } // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void priv_fill_assign(size_type n, const T& val) { if (n > size()) { std::fill(begin(), end(), val); this->insert(cend(), n - size(), val); } else { this->erase(cbegin() + n, cend()); std::fill(begin(), end(), val); } } template void priv_initialize_dispatch(Integer n, Integer x, containers_detail::true_) { this->priv_initialize_map(n); this->priv_fill_initialize(x); } template void priv_initialize_dispatch(InpIt first, InpIt last, containers_detail::false_) { typedef typename std::iterator_traits::iterator_category ItCat; this->priv_range_initialize(first, last, ItCat()); } void priv_destroy_range(iterator p, iterator p2) { for(;p != p2; ++p) containers_detail::get_pointer(&*p)->~value_type(); } void priv_destroy_range(pointer p, pointer p2) { for(;p != p2; ++p) containers_detail::get_pointer(&*p)->~value_type(); } template void priv_assign_dispatch(Integer n, Integer val, containers_detail::true_) { this->priv_fill_assign((size_type) n, (value_type)val); } template void priv_assign_dispatch(InpIt first, InpIt last, containers_detail::false_) { typedef typename std::iterator_traits::iterator_category ItCat; this->priv_assign_aux(first, last, ItCat()); } template void priv_assign_aux(InpIt first, InpIt last, std::input_iterator_tag) { iterator cur = begin(); for ( ; first != last && cur != end(); ++cur, ++first) *cur = *first; if (first == last) this->erase(cur, cend()); else this->insert(cend(), first, last); } template void priv_assign_aux(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type len = std::distance(first, last); if (len > size()) { FwdIt mid = first; std::advance(mid, size()); std::copy(first, mid, begin()); this->insert(cend(), mid, last); } else this->erase(std::copy(first, last, begin()), cend()); } template void priv_insert_dispatch(const_iterator pos, Integer n, Integer x, containers_detail::true_) { this->priv_fill_insert(pos, (size_type) n, (value_type)x); } template void priv_insert_dispatch(const_iterator pos,InpIt first, InpIt last, containers_detail::false_) { typedef typename std::iterator_traits::iterator_category ItCat; this->priv_insert_aux(pos, first, last, ItCat()); } void priv_insert_aux(const_iterator pos, size_type n, const value_type& x) { typedef constant_iterator c_it; this->priv_insert_aux(pos, c_it(x, n), c_it()); } //Just forward all operations to priv_insert_aux_impl template void priv_insert_aux(const_iterator p, FwdIt first, FwdIt last) { containers_detail::advanced_insert_aux_proxy proxy(first, last); priv_insert_aux_impl(p, (size_type)std::distance(first, last), proxy); } void priv_insert_aux_impl(const_iterator p, size_type n, advanced_insert_aux_int_t &interf) { iterator pos(p); if(!this->members_.m_map){ this->priv_initialize_map(0); pos = this->begin(); } const difference_type elemsbefore = pos - this->members_.m_start; size_type length = this->size(); if (elemsbefore < static_cast(length / 2)) { iterator new_start = this->priv_reserve_elements_at_front(n); iterator old_start = this->members_.m_start; pos = this->members_.m_start + elemsbefore; if (elemsbefore >= difference_type(n)) { iterator start_n = this->members_.m_start + difference_type(n); ::boost::uninitialized_move(this->members_.m_start, start_n, new_start); this->members_.m_start = new_start; boost::move(start_n, pos, old_start); interf.copy_all_to(pos - difference_type(n)); } else { difference_type mid_count = (difference_type(n) - elemsbefore); iterator mid_start = old_start - mid_count; interf.uninitialized_copy_some_and_update(mid_start, mid_count, true); this->members_.m_start = mid_start; ::boost::uninitialized_move(old_start, pos, new_start); this->members_.m_start = new_start; interf.copy_all_to(old_start); } } else { iterator new_finish = this->priv_reserve_elements_at_back(n); iterator old_finish = this->members_.m_finish; const difference_type elemsafter = difference_type(length) - elemsbefore; pos = this->members_.m_finish - elemsafter; if (elemsafter >= difference_type(n)) { iterator finish_n = this->members_.m_finish - difference_type(n); ::boost::uninitialized_move(finish_n, this->members_.m_finish, this->members_.m_finish); this->members_.m_finish = new_finish; boost::move_backward(pos, finish_n, old_finish); interf.copy_all_to(pos); } else { interf.uninitialized_copy_some_and_update(old_finish, elemsafter, false); this->members_.m_finish += n-elemsafter; ::boost::uninitialized_move(pos, old_finish, this->members_.m_finish); this->members_.m_finish = new_finish; interf.copy_all_to(pos); } } } void priv_fill_insert(const_iterator pos, size_type n, const value_type& x) { typedef constant_iterator c_it; this->insert(pos, c_it(x, n), c_it()); } // Precondition: this->members_.m_start and this->members_.m_finish have already been initialized, // but none of the deque's elements have yet been constructed. void priv_fill_initialize(const value_type& value) { index_pointer cur; BOOST_TRY { for (cur = this->members_.m_start.m_node; cur < this->members_.m_finish.m_node; ++cur){ std::uninitialized_fill(*cur, *cur + this->s_buffer_size(), value); } std::uninitialized_fill(this->members_.m_finish.m_first, this->members_.m_finish.m_cur, value); } BOOST_CATCH(...){ this->priv_destroy_range(this->members_.m_start, iterator(*cur, cur)); BOOST_RETHROW } BOOST_CATCH_END } template void priv_range_initialize(InpIt first, InpIt last, std::input_iterator_tag) { this->priv_initialize_map(0); BOOST_TRY { for ( ; first != last; ++first) this->push_back(*first); } BOOST_CATCH(...){ this->clear(); BOOST_RETHROW } BOOST_CATCH_END } template void priv_range_initialize(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type n = 0; n = std::distance(first, last); this->priv_initialize_map(n); index_pointer cur_node; BOOST_TRY { for (cur_node = this->members_.m_start.m_node; cur_node < this->members_.m_finish.m_node; ++cur_node) { FwdIt mid = first; std::advance(mid, this->s_buffer_size()); ::boost::uninitialized_copy_or_move(first, mid, *cur_node); first = mid; } ::boost::uninitialized_copy_or_move(first, last, this->members_.m_finish.m_first); } BOOST_CATCH(...){ this->priv_destroy_range(this->members_.m_start, iterator(*cur_node, cur_node)); BOOST_RETHROW } BOOST_CATCH_END } // Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_first. void priv_pop_back_aux() { this->priv_deallocate_node(this->members_.m_finish.m_first); this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node - 1); this->members_.m_finish.m_cur = this->members_.m_finish.m_last - 1; containers_detail::get_pointer(this->members_.m_finish.m_cur)->~value_type(); } // Called only if this->members_.m_start.m_cur == this->members_.m_start.m_last - 1. Note that // if the deque has at least one element (a precondition for this member // function), and if this->members_.m_start.m_cur == this->members_.m_start.m_last, then the deque // must have at least two nodes. void priv_pop_front_aux() { containers_detail::get_pointer(this->members_.m_start.m_cur)->~value_type(); this->priv_deallocate_node(this->members_.m_start.m_first); this->members_.m_start.priv_set_node(this->members_.m_start.m_node + 1); this->members_.m_start.m_cur = this->members_.m_start.m_first; } iterator priv_reserve_elements_at_front(size_type n) { size_type vacancies = this->members_.m_start.m_cur - this->members_.m_start.m_first; if (n > vacancies){ size_type new_elems = n-vacancies; size_type new_nodes = (new_elems + this->s_buffer_size() - 1) / this->s_buffer_size(); size_type s = (size_type)(this->members_.m_start.m_node - this->members_.m_map); if (new_nodes > s){ this->priv_reallocate_map(new_nodes, true); } size_type i = 1; BOOST_TRY { for (; i <= new_nodes; ++i) *(this->members_.m_start.m_node - i) = this->priv_allocate_node(); } BOOST_CATCH(...) { for (size_type j = 1; j < i; ++j) this->priv_deallocate_node(*(this->members_.m_start.m_node - j)); BOOST_RETHROW } BOOST_CATCH_END } return this->members_.m_start - difference_type(n); } iterator priv_reserve_elements_at_back(size_type n) { size_type vacancies = (this->members_.m_finish.m_last - this->members_.m_finish.m_cur) - 1; if (n > vacancies){ size_type new_elems = n - vacancies; size_type new_nodes = (new_elems + this->s_buffer_size() - 1)/s_buffer_size(); size_type s = (size_type)(this->members_.m_map_size - (this->members_.m_finish.m_node - this->members_.m_map)); if (new_nodes + 1 > s){ this->priv_reallocate_map(new_nodes, false); } size_type i; BOOST_TRY { for (i = 1; i <= new_nodes; ++i) *(this->members_.m_finish.m_node + i) = this->priv_allocate_node(); } BOOST_CATCH(...) { for (size_type j = 1; j < i; ++j) this->priv_deallocate_node(*(this->members_.m_finish.m_node + j)); BOOST_RETHROW } BOOST_CATCH_END } return this->members_.m_finish + difference_type(n); } void priv_reallocate_map(size_type nodes_to_add, bool add_at_front) { size_type old_num_nodes = this->members_.m_finish.m_node - this->members_.m_start.m_node + 1; size_type new_num_nodes = old_num_nodes + nodes_to_add; index_pointer new_nstart; if (this->members_.m_map_size > 2 * new_num_nodes) { new_nstart = this->members_.m_map + (this->members_.m_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); if (new_nstart < this->members_.m_start.m_node) boost::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart); else boost::move_backward (this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart + old_num_nodes); } else { size_type new_map_size = this->members_.m_map_size + containers_detail::max_value(this->members_.m_map_size, nodes_to_add) + 2; index_pointer new_map = this->priv_allocate_map(new_map_size); new_nstart = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); boost::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = new_map; this->members_.m_map_size = new_map_size; } this->members_.m_start.priv_set_node(new_nstart); this->members_.m_finish.priv_set_node(new_nstart + old_num_nodes - 1); } /// @endcond }; // Nonmember functions. template inline bool operator==(const deque& x, const deque& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template inline bool operator<(const deque& x, const deque& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const deque& x, const deque& y) { return !(x == y); } template inline bool operator>(const deque& x, const deque& y) { return y < x; } template inline bool operator<=(const deque& x, const deque& y) { return !(y < x); } template inline bool operator>=(const deque& x, const deque& y) { return !(x < y); } template inline void swap(deque& x, deque& y) { x.swap(y); } }} /// @cond namespace boost { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { enum { value = has_trivial_destructor::value }; }; */ } /// @endcond #include #endif // #ifndef BOOST_CONTAINERS_DEQUE_HPP