////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINERS_MAP_HPP #define BOOST_CONTAINERS_MAP_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond // Forward declarations of operators == and <, needed for friend declarations. template inline bool operator==(const map& x, const map& y); template inline bool operator<(const map& x, const map& y); /// @endcond //! A map is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of values of another //! type T based on the keys. The map class supports bidirectional iterators. //! //! A map satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! map the key_type is Key and the value_type is std::pair. //! //! Pred is the ordering function for Keys (e.g. std::less). //! //! A is the allocator to allocate the value_types //! (e.g. allocator< std::pair > ). #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template >, class A = std::allocator > #else template #endif class map { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(map) typedef containers_detail::rbtree, containers_detail::select1st< std::pair >, Pred, A> tree_t; tree_t m_tree; // red-black tree representing map /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef T mapped_type; typedef Pred key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; typedef std::pair nonconst_value_type; typedef containers_detail::pair nonconst_impl_value_type; /// @cond class value_compare_impl : public Pred, public std::binary_function { friend class map; protected : value_compare_impl(const Pred &c) : Pred(c) {} public: bool operator()(const value_type& x, const value_type& y) const { return Pred::operator()(x.first, y.first); } }; /// @endcond typedef value_compare_impl value_compare; //! Effects: Constructs an empty map using the specified comparison object //! and allocator. //! //! Complexity: Constant. explicit map(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Constructs an empty map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template map(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, true) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Constructs an empty map using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! Complexity: Linear in N. template map( ordered_unique_range_t, InputIterator first, InputIterator last , const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Copy constructs a map. //! //! Complexity: Linear in x.size(). map(const map& x) : m_tree(x.m_tree) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Move constructs a map. Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. map(BOOST_RV_REF(map) x) : m_tree(boost::move(x.m_tree)) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). map& operator=(BOOST_COPY_ASSIGN_REF(map) x) { m_tree = x.m_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. map& operator=(BOOST_RV_REF(map) x) { m_tree = boost::move(x.m_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return value_compare(m_tree.key_comp()); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return m_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_tree.begin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_tree.end(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_tree.max_size(); } //! Effects: If there is no key equivalent to x in the map, inserts //! value_type(x, T()) into the map. //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T& operator[](const key_type& k) { //we can optimize this iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ containers_detail::value_init v; value_type val(k, boost::move(v.m_t)); i = insert(i, boost::move(val)); } return (*i).second; } //! Effects: If there is no key equivalent to x in the map, inserts //! value_type(boost::move(x), T()) into the map (the key is move-constructed) //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T& operator[](BOOST_RV_REF(key_type) mk) { key_type &k = mk; //we can optimize this iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ value_type val(boost::move(k), boost::move(T())); i = insert(i, boost::move(val)); } return (*i).second; } //! Returns: A reference to the element whose key is equivalent to x. //! Throws: An exception object of type out_of_range if no such element is present. //! Complexity: logarithmic. T& at(const key_type& k) { iterator i = this->find(k); if(i == this->end()){ throw std::out_of_range("key not found"); } return i->second; } //! Returns: A reference to the element whose key is equivalent to x. //! Throws: An exception object of type out_of_range if no such element is present. //! Complexity: logarithmic. const T& at(const key_type& k) const { const_iterator i = this->find(k); if(i == this->end()){ throw std::out_of_range("key not found"); } return i->second; } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(map& x) { m_tree.swap(x.m_tree); } //! Effects: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(const value_type& x) { return m_tree.insert_unique(x); } //! Effects: Inserts a new value_type created from the pair if and only if //! there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(const nonconst_value_type& x) { return m_tree.insert_unique(x); } //! Effects: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(BOOST_RV_REF(nonconst_value_type) x) { return m_tree.insert_unique(boost::move(x)); } //! Effects: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(BOOST_RV_REF(nonconst_impl_value_type) x) { return m_tree.insert_unique(boost::move(x)); } //! Effects: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(BOOST_RV_REF(value_type) x) { return m_tree.insert_unique(boost::move(x)); } //! Effects: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, const value_type& x) { return m_tree.insert_unique(position, x); } //! Effects: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, BOOST_RV_REF(nonconst_value_type) x) { return m_tree.insert_unique(position, boost::move(x)); } //! Effects: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, BOOST_RV_REF(nonconst_impl_value_type) x) { return m_tree.insert_unique(position, boost::move(x)); } //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. iterator insert(iterator position, const nonconst_value_type& x) { return m_tree.insert_unique(position, x); } //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. iterator insert(iterator position, BOOST_RV_REF(value_type) x) { return m_tree.insert_unique(position, boost::move(x)); } //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) template void insert(InputIterator first, InputIterator last) { m_tree.insert_unique(first, last); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container if and only if there is //! no element in the container with an equivalent key. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. template iterator emplace(Args&&... args) { return m_tree.emplace_unique(boost::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container if and only if there is //! no element in the container with an equivalent key. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_unique(hint, boost::forward(args)...); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace() { return m_tree.emplace_unique(); } iterator emplace_hint(const_iterator hint) { return m_tree.emplace_hint_unique(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ \ template \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _));}\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Amortized constant time iterator erase(const_iterator position) { return m_tree.erase(position); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_tree.clear(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! Returns: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.find(x) == m_tree.end() ? 0 : 1; } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template friend bool operator== (const map&, const map&); template friend bool operator< (const map&, const map&); /// @endcond }; template inline bool operator==(const map& x, const map& y) { return x.m_tree == y.m_tree; } template inline bool operator<(const map& x, const map& y) { return x.m_tree < y.m_tree; } template inline bool operator!=(const map& x, const map& y) { return !(x == y); } template inline bool operator>(const map& x, const map& y) { return y < x; } template inline bool operator<=(const map& x, const map& y) { return !(y < x); } template inline bool operator>=(const map& x, const map& y) { return !(x < y); } template inline void swap(map& x, map& y) { x.swap(y); } /// @cond // Forward declaration of operators < and ==, needed for friend declaration. template inline bool operator==(const multimap& x, const multimap& y); template inline bool operator<(const multimap& x, const multimap& y); } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ namespace container { /// @endcond //! A multimap is a kind of associative container that supports equivalent keys //! (possibly containing multiple copies of the same key value) and provides for //! fast retrieval of values of another type T based on the keys. The multimap class //! supports bidirectional iterators. //! //! A multimap satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! map the key_type is Key and the value_type is std::pair. //! //! Pred is the ordering function for Keys (e.g. std::less). //! //! A is the allocator to allocate the value_types //!(e.g. allocator< std::pair<const Key, T> >). #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template >, class A = std::allocator > #else template #endif class multimap { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(multimap) typedef containers_detail::rbtree, containers_detail::select1st< std::pair >, Pred, A> tree_t; tree_t m_tree; // red-black tree representing map /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef T mapped_type; typedef Pred key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; typedef std::pair nonconst_value_type; typedef containers_detail::pair nonconst_impl_value_type; /// @cond class value_compare_impl : public Pred, public std::binary_function { friend class multimap; protected : value_compare_impl(const Pred &c) : Pred(c) {} public: bool operator()(const value_type& x, const value_type& y) const { return Pred::operator()(x.first, y.first); } }; /// @endcond typedef value_compare_impl value_compare; //! Effects: Constructs an empty multimap using the specified comparison //! object and allocator. //! //! Complexity: Constant. explicit multimap(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Constructs an empty multimap using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template multimap(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, false) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Constructs an empty multimap using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate. //! //! Complexity: Linear in N. template multimap(ordered_range_t ordered_range, InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a multimap. //! //! Complexity: Linear in x.size(). multimap(const multimap& x) : m_tree(x.m_tree) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Move constructs a multimap. Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. multimap(BOOST_RV_REF(multimap) x) : m_tree(boost::move(x.m_tree)) { //Allocator type must be std::pair BOOST_STATIC_ASSERT((containers_detail::is_same, typename A::value_type>::value)); } //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). multimap& operator=(BOOST_COPY_ASSIGN_REF(multimap) x) { m_tree = x.m_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. multimap& operator=(BOOST_RV_REF(multimap) x) { m_tree = boost::move(x.m_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return value_compare(m_tree.key_comp()); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return m_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_tree.begin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_tree.end(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(multimap& x) { m_tree.swap(x.m_tree); } //! Effects: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic. iterator insert(const value_type& x) { return m_tree.insert_equal(x); } //! Effects: Inserts a new value constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic. iterator insert(const nonconst_value_type& x) { return m_tree.insert_equal(x); } //! Effects: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic. iterator insert(BOOST_RV_REF(nonconst_value_type) x) { return m_tree.insert_equal(boost::move(x)); } //! Effects: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic. iterator insert(BOOST_RV_REF(nonconst_impl_value_type) x) { return m_tree.insert_equal(boost::move(x)); } //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, const value_type& x) { return m_tree.insert_equal(position, x); } //! Effects: Inserts a new value constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, const nonconst_value_type& x) { return m_tree.insert_equal(position, x); } //! Effects: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, BOOST_RV_REF(nonconst_value_type) x) { return m_tree.insert_equal(position, boost::move(x)); } //! Effects: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, BOOST_RV_REF(nonconst_impl_value_type) x) { return m_tree.insert_equal(position, boost::move(x)); } //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) . //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) template void insert(InputIterator first, InputIterator last) { m_tree.insert_equal(first, last); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. template iterator emplace(Args&&... args) { return m_tree.emplace_equal(boost::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_equal(hint, boost::forward(args)...); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace() { return m_tree.emplace_equal(); } iterator emplace_hint(const_iterator hint) { return m_tree.emplace_hint_equal(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ \ template \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); }\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Amortized constant time iterator erase(const_iterator position) { return m_tree.erase(position); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_tree.clear(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! Returns: A const iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.count(x); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) {return m_tree.lower_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_tree.equal_range(x); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template friend bool operator== (const multimap& x, const multimap& y); template friend bool operator< (const multimap& x, const multimap& y); /// @endcond }; template inline bool operator==(const multimap& x, const multimap& y) { return x.m_tree == y.m_tree; } template inline bool operator<(const multimap& x, const multimap& y) { return x.m_tree < y.m_tree; } template inline bool operator!=(const multimap& x, const multimap& y) { return !(x == y); } template inline bool operator>(const multimap& x, const multimap& y) { return y < x; } template inline bool operator<=(const multimap& x, const multimap& y) { return !(y < x); } template inline bool operator>=(const multimap& x, const multimap& y) { return !(x < y); } template inline void swap(multimap& x, multimap& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ namespace container { /// @endcond }} #include #endif /* BOOST_CONTAINERS_MAP_HPP */