// ---------------------------------------------------------------------------- // Copyright (C) 2002-2006 Marcin Kalicinski // Copyright (C) 2009 Sebastian Redl // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // For more information, see www.boost.org // ---------------------------------------------------------------------------- #ifndef BOOST_PROPERTY_TREE_DETAIL_PTREE_IMPLEMENTATION_HPP_INCLUDED #define BOOST_PROPERTY_TREE_DETAIL_PTREE_IMPLEMENTATION_HPP_INCLUDED #include <boost/iterator/iterator_adaptor.hpp> #include <boost/iterator/reverse_iterator.hpp> #include <boost/assert.hpp> #include <memory> #if defined(BOOST_MSVC) && \ (_MSC_FULL_VER >= 160000000 && _MSC_FULL_VER < 170000000) #define BOOST_PROPERTY_TREE_PAIR_BUG #endif namespace boost { namespace property_tree { template <class K, class D, class C> struct basic_ptree<K, D, C>::subs { struct by_name {}; // The actual child container. #if defined(BOOST_PROPERTY_TREE_PAIR_BUG) // MSVC 10 has moved std::pair's members to a base // class. Unfortunately this does break the interface. BOOST_STATIC_CONSTANT(unsigned, first_offset = offsetof(value_type, first)); typedef multi_index_container<value_type, multi_index::indexed_by< multi_index::sequenced<>, multi_index::ordered_non_unique<multi_index::tag<by_name>, multi_index::member_offset<value_type, const key_type, first_offset>, key_compare > > > base_container; #else typedef multi_index_container<value_type, multi_index::indexed_by< multi_index::sequenced<>, multi_index::ordered_non_unique<multi_index::tag<by_name>, multi_index::member<value_type, const key_type, &value_type::first>, key_compare > > > base_container; #endif // The by-name lookup index. typedef typename base_container::template index<by_name>::type by_name_index; // Access functions for getting to the children of a tree. static base_container& ch(self_type *s) { return *static_cast<base_container*>(s->m_children); } static const base_container& ch(const self_type *s) { return *static_cast<const base_container*>(s->m_children); } static by_name_index& assoc(self_type *s) { return ch(s).BOOST_NESTED_TEMPLATE get<by_name>(); } static const by_name_index& assoc(const self_type *s) { return ch(s).BOOST_NESTED_TEMPLATE get<by_name>(); } }; template <class K, class D, class C> class basic_ptree<K, D, C>::iterator : public boost::iterator_adaptor< iterator, typename subs::base_container::iterator, value_type> { friend class boost::iterator_core_access; typedef boost::iterator_adaptor< iterator, typename subs::base_container::iterator, value_type> baset; public: typedef typename baset::reference reference; iterator() {} explicit iterator(typename iterator::base_type b) : iterator::iterator_adaptor_(b) {} reference dereference() const { // multi_index doesn't allow modification of its values, because // indexes could sort by anything, and modification screws that up. // However, we only sort by the key, and it's protected against // modification in the value_type, so this const_cast is safe. return const_cast<reference>(*this->base_reference()); } }; template <class K, class D, class C> class basic_ptree<K, D, C>::const_iterator : public boost::iterator_adaptor< const_iterator, typename subs::base_container::const_iterator> { public: const_iterator() {} explicit const_iterator(typename const_iterator::base_type b) : const_iterator::iterator_adaptor_(b) {} const_iterator(iterator b) : const_iterator::iterator_adaptor_(b.base()) {} }; template <class K, class D, class C> class basic_ptree<K, D, C>::reverse_iterator : public boost::reverse_iterator<iterator> { public: reverse_iterator() {} explicit reverse_iterator(iterator b) : boost::reverse_iterator<iterator>(b) {} }; template <class K, class D, class C> class basic_ptree<K, D, C>::const_reverse_iterator : public boost::reverse_iterator<const_iterator> { public: const_reverse_iterator() {} explicit const_reverse_iterator(const_iterator b) : boost::reverse_iterator<const_iterator>(b) {} const_reverse_iterator( typename basic_ptree<K, D, C>::reverse_iterator b) : boost::reverse_iterator<const_iterator>(b) {} }; template <class K, class D, class C> class basic_ptree<K, D, C>::assoc_iterator : public boost::iterator_adaptor<assoc_iterator, typename subs::by_name_index::iterator, value_type> { friend class boost::iterator_core_access; typedef boost::iterator_adaptor<assoc_iterator, typename subs::by_name_index::iterator, value_type> baset; public: typedef typename baset::reference reference; assoc_iterator() {} explicit assoc_iterator(typename assoc_iterator::base_type b) : assoc_iterator::iterator_adaptor_(b) {} reference dereference() const { return const_cast<reference>(*this->base_reference()); } }; template <class K, class D, class C> class basic_ptree<K, D, C>::const_assoc_iterator : public boost::iterator_adaptor<const_assoc_iterator, typename subs::by_name_index::const_iterator> { public: const_assoc_iterator() {} explicit const_assoc_iterator( typename const_assoc_iterator::base_type b) : const_assoc_iterator::iterator_adaptor_(b) {} const_assoc_iterator(assoc_iterator b) : const_assoc_iterator::iterator_adaptor_(b.base()) {} }; // Big five // Perhaps the children collection could be created on-demand only, to // reduce heap traffic. But that's a lot more work to implement. template<class K, class D, class C> inline basic_ptree<K, D, C>::basic_ptree() : m_children(new typename subs::base_container) { } template<class K, class D, class C> inline basic_ptree<K, D, C>::basic_ptree(const data_type &d) : m_data(d), m_children(new typename subs::base_container) { } template<class K, class D, class C> inline basic_ptree<K, D, C>::basic_ptree(const basic_ptree<K, D, C> &rhs) : m_data(rhs.m_data), m_children(new typename subs::base_container(subs::ch(&rhs))) { } template<class K, class D, class C> basic_ptree<K, D, C> & basic_ptree<K, D, C>::operator =(const basic_ptree<K, D, C> &rhs) { self_type(rhs).swap(*this); return *this; } template<class K, class D, class C> basic_ptree<K, D, C>::~basic_ptree() { delete &subs::ch(this); } template<class K, class D, class C> inline void basic_ptree<K, D, C>::swap(basic_ptree<K, D, C> &rhs) { m_data.swap(rhs.m_data); // Void pointers, no ADL necessary std::swap(m_children, rhs.m_children); } // Container view template<class K, class D, class C> inline typename basic_ptree<K, D, C>::size_type basic_ptree<K, D, C>::size() const { return subs::ch(this).size(); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::size_type basic_ptree<K, D, C>::max_size() const { return subs::ch(this).max_size(); } template<class K, class D, class C> inline bool basic_ptree<K, D, C>::empty() const { return subs::ch(this).empty(); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::begin() { return iterator(subs::ch(this).begin()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_iterator basic_ptree<K, D, C>::begin() const { return const_iterator(subs::ch(this).begin()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::end() { return iterator(subs::ch(this).end()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_iterator basic_ptree<K, D, C>::end() const { return const_iterator(subs::ch(this).end()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::reverse_iterator basic_ptree<K, D, C>::rbegin() { return reverse_iterator(this->end()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_reverse_iterator basic_ptree<K, D, C>::rbegin() const { return const_reverse_iterator(this->end()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::reverse_iterator basic_ptree<K, D, C>::rend() { return reverse_iterator(this->begin()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_reverse_iterator basic_ptree<K, D, C>::rend() const { return const_reverse_iterator(this->begin()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::value_type & basic_ptree<K, D, C>::front() { return const_cast<value_type&>(subs::ch(this).front()); } template<class K, class D, class C> inline const typename basic_ptree<K, D, C>::value_type & basic_ptree<K, D, C>::front() const { return subs::ch(this).front(); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::value_type & basic_ptree<K, D, C>::back() { return const_cast<value_type&>(subs::ch(this).back()); } template<class K, class D, class C> inline const typename basic_ptree<K, D, C>::value_type & basic_ptree<K, D, C>::back() const { return subs::ch(this).back(); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::insert(iterator where, const value_type &value) { return iterator(subs::ch(this).insert(where.base(), value).first); } template<class K, class D, class C> template<class It> inline void basic_ptree<K, D, C>::insert(iterator where, It first, It last) { subs::ch(this).insert(where.base(), first, last); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::erase(iterator where) { return iterator(subs::ch(this).erase(where.base())); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::erase(iterator first, iterator last) { return iterator(subs::ch(this).erase(first.base(), last.base())); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::push_front(const value_type &value) { return iterator(subs::ch(this).push_front(value).first); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::push_back(const value_type &value) { return iterator(subs::ch(this).push_back(value).first); } template<class K, class D, class C> inline void basic_ptree<K, D, C>::pop_front() { subs::ch(this).pop_front(); } template<class K, class D, class C> inline void basic_ptree<K, D, C>::pop_back() { subs::ch(this).pop_back(); } template<class K, class D, class C> inline void basic_ptree<K, D, C>::reverse() { subs::ch(this).reverse(); } template<class K, class D, class C> inline void basic_ptree<K, D, C>::sort() { subs::ch(this).sort(); } template<class K, class D, class C> template<class Compare> inline void basic_ptree<K, D, C>::sort(Compare comp) { subs::ch(this).sort(comp); } // Equality template<class K, class D, class C> inline bool basic_ptree<K, D, C>::operator ==( const basic_ptree<K, D, C> &rhs) const { // The size test is cheap, so add it as an optimization return size() == rhs.size() && data() == rhs.data() && subs::ch(this) == subs::ch(&rhs); } template<class K, class D, class C> inline bool basic_ptree<K, D, C>::operator !=( const basic_ptree<K, D, C> &rhs) const { return !(*this == rhs); } // Associative view template<class K, class D, class C> inline typename basic_ptree<K, D, C>::assoc_iterator basic_ptree<K, D, C>::ordered_begin() { return assoc_iterator(subs::assoc(this).begin()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_assoc_iterator basic_ptree<K, D, C>::ordered_begin() const { return const_assoc_iterator(subs::assoc(this).begin()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::assoc_iterator basic_ptree<K, D, C>::not_found() { return assoc_iterator(subs::assoc(this).end()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_assoc_iterator basic_ptree<K, D, C>::not_found() const { return const_assoc_iterator(subs::assoc(this).end()); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::assoc_iterator basic_ptree<K, D, C>::find(const key_type &key) { return assoc_iterator(subs::assoc(this).find(key)); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_assoc_iterator basic_ptree<K, D, C>::find(const key_type &key) const { return const_assoc_iterator(subs::assoc(this).find(key)); } template<class K, class D, class C> inline std::pair< typename basic_ptree<K, D, C>::assoc_iterator, typename basic_ptree<K, D, C>::assoc_iterator > basic_ptree<K, D, C>::equal_range(const key_type &key) { std::pair<typename subs::by_name_index::iterator, typename subs::by_name_index::iterator> r( subs::assoc(this).equal_range(key)); return std::pair<assoc_iterator, assoc_iterator>( assoc_iterator(r.first), assoc_iterator(r.second)); } template<class K, class D, class C> inline std::pair< typename basic_ptree<K, D, C>::const_assoc_iterator, typename basic_ptree<K, D, C>::const_assoc_iterator > basic_ptree<K, D, C>::equal_range(const key_type &key) const { std::pair<typename subs::by_name_index::const_iterator, typename subs::by_name_index::const_iterator> r( subs::assoc(this).equal_range(key)); return std::pair<const_assoc_iterator, const_assoc_iterator>( const_assoc_iterator(r.first), const_assoc_iterator(r.second)); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::size_type basic_ptree<K, D, C>::count(const key_type &key) const { return subs::assoc(this).count(key); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::size_type basic_ptree<K, D, C>::erase(const key_type &key) { return subs::assoc(this).erase(key); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::iterator basic_ptree<K, D, C>::to_iterator(assoc_iterator ai) { return iterator(subs::ch(this). BOOST_NESTED_TEMPLATE project<0>(ai.base())); } template<class K, class D, class C> inline typename basic_ptree<K, D, C>::const_iterator basic_ptree<K, D, C>::to_iterator(const_assoc_iterator ai) const { return const_iterator(subs::ch(this). BOOST_NESTED_TEMPLATE project<0>(ai.base())); } // Property tree view template<class K, class D, class C> inline typename basic_ptree<K, D, C>::data_type & basic_ptree<K, D, C>::data() { return m_data; } template<class K, class D, class C> inline const typename basic_ptree<K, D, C>::data_type & basic_ptree<K, D, C>::data() const { return m_data; } template<class K, class D, class C> inline void basic_ptree<K, D, C>::clear() { m_data = data_type(); subs::ch(this).clear(); } template<class K, class D, class C> basic_ptree<K, D, C> & basic_ptree<K, D, C>::get_child(const path_type &path) { path_type p(path); self_type *n = walk_path(p); if (!n) { BOOST_PROPERTY_TREE_THROW(ptree_bad_path("No such node", path)); } return *n; } template<class K, class D, class C> inline const basic_ptree<K, D, C> & basic_ptree<K, D, C>::get_child(const path_type &path) const { return const_cast<self_type*>(this)->get_child(path); } template<class K, class D, class C> inline basic_ptree<K, D, C> & basic_ptree<K, D, C>::get_child(const path_type &path, self_type &default_value) { path_type p(path); self_type *n = walk_path(p); return n ? *n : default_value; } template<class K, class D, class C> inline const basic_ptree<K, D, C> & basic_ptree<K, D, C>::get_child(const path_type &path, const self_type &default_value) const { return const_cast<self_type*>(this)->get_child(path, const_cast<self_type&>(default_value)); } template<class K, class D, class C> optional<basic_ptree<K, D, C> &> basic_ptree<K, D, C>::get_child_optional(const path_type &path) { path_type p(path); self_type *n = walk_path(p); if (!n) { return optional<self_type&>(); } return *n; } template<class K, class D, class C> optional<const basic_ptree<K, D, C> &> basic_ptree<K, D, C>::get_child_optional(const path_type &path) const { path_type p(path); self_type *n = walk_path(p); if (!n) { return optional<const self_type&>(); } return *n; } template<class K, class D, class C> basic_ptree<K, D, C> & basic_ptree<K, D, C>::put_child(const path_type &path, const self_type &value) { path_type p(path); self_type &parent = force_path(p); // Got the parent. Now get the correct child. key_type fragment = p.reduce(); assoc_iterator el = parent.find(fragment); // If the new child exists, replace it. if(el != parent.not_found()) { return el->second = value; } else { return parent.push_back(value_type(fragment, value))->second; } } template<class K, class D, class C> basic_ptree<K, D, C> & basic_ptree<K, D, C>::add_child(const path_type &path, const self_type &value) { path_type p(path); self_type &parent = force_path(p); // Got the parent. key_type fragment = p.reduce(); return parent.push_back(value_type(fragment, value))->second; } template<class K, class D, class C> template<class Type, class Translator> typename boost::enable_if<detail::is_translator<Translator>, Type>::type basic_ptree<K, D, C>::get_value(Translator tr) const { if(boost::optional<Type> o = get_value_optional<Type>(tr)) { return *o; } BOOST_PROPERTY_TREE_THROW(ptree_bad_data( std::string("conversion of data to type \"") + typeid(Type).name() + "\" failed", data())); } template<class K, class D, class C> template<class Type> inline Type basic_ptree<K, D, C>::get_value() const { return get_value<Type>( typename translator_between<data_type, Type>::type()); } template<class K, class D, class C> template<class Type, class Translator> inline Type basic_ptree<K, D, C>::get_value(const Type &default_value, Translator tr) const { return get_value_optional<Type>(tr).get_value_or(default_value); } template<class K, class D, class C> template <class Ch, class Translator> typename boost::enable_if< detail::is_character<Ch>, std::basic_string<Ch> >::type basic_ptree<K, D, C>::get_value(const Ch *default_value, Translator tr)const { return get_value<std::basic_string<Ch>, Translator>(default_value, tr); } template<class K, class D, class C> template<class Type> inline typename boost::disable_if<detail::is_translator<Type>, Type>::type basic_ptree<K, D, C>::get_value(const Type &default_value) const { return get_value(default_value, typename translator_between<data_type, Type>::type()); } template<class K, class D, class C> template <class Ch> typename boost::enable_if< detail::is_character<Ch>, std::basic_string<Ch> >::type basic_ptree<K, D, C>::get_value(const Ch *default_value) const { return get_value< std::basic_string<Ch> >(default_value); } template<class K, class D, class C> template<class Type, class Translator> inline optional<Type> basic_ptree<K, D, C>::get_value_optional( Translator tr) const { return tr.get_value(data()); } template<class K, class D, class C> template<class Type> inline optional<Type> basic_ptree<K, D, C>::get_value_optional() const { return get_value_optional<Type>( typename translator_between<data_type, Type>::type()); } template<class K, class D, class C> template<class Type, class Translator> inline typename boost::enable_if<detail::is_translator<Translator>, Type>::type basic_ptree<K, D, C>::get(const path_type &path, Translator tr) const { return get_child(path).BOOST_NESTED_TEMPLATE get_value<Type>(tr); } template<class K, class D, class C> template<class Type> inline Type basic_ptree<K, D, C>::get(const path_type &path) const { return get_child(path).BOOST_NESTED_TEMPLATE get_value<Type>(); } template<class K, class D, class C> template<class Type, class Translator> inline Type basic_ptree<K, D, C>::get(const path_type &path, const Type &default_value, Translator tr) const { return get_optional<Type>(path, tr).get_value_or(default_value); } template<class K, class D, class C> template <class Ch, class Translator> typename boost::enable_if< detail::is_character<Ch>, std::basic_string<Ch> >::type basic_ptree<K, D, C>::get( const path_type &path, const Ch *default_value, Translator tr) const { return get<std::basic_string<Ch>, Translator>(path, default_value, tr); } template<class K, class D, class C> template<class Type> inline typename boost::disable_if<detail::is_translator<Type>, Type>::type basic_ptree<K, D, C>::get(const path_type &path, const Type &default_value) const { return get_optional<Type>(path).get_value_or(default_value); } template<class K, class D, class C> template <class Ch> typename boost::enable_if< detail::is_character<Ch>, std::basic_string<Ch> >::type basic_ptree<K, D, C>::get( const path_type &path, const Ch *default_value) const { return get< std::basic_string<Ch> >(path, default_value); } template<class K, class D, class C> template<class Type, class Translator> optional<Type> basic_ptree<K, D, C>::get_optional(const path_type &path, Translator tr) const { if (optional<const self_type&> child = get_child_optional(path)) return child.get(). BOOST_NESTED_TEMPLATE get_value_optional<Type>(tr); else return optional<Type>(); } template<class K, class D, class C> template<class Type> optional<Type> basic_ptree<K, D, C>::get_optional( const path_type &path) const { if (optional<const self_type&> child = get_child_optional(path)) return child.get().BOOST_NESTED_TEMPLATE get_value_optional<Type>(); else return optional<Type>(); } template<class K, class D, class C> template<class Type, class Translator> void basic_ptree<K, D, C>::put_value(const Type &value, Translator tr) { if(optional<data_type> o = tr.put_value(value)) { data() = *o; } else { BOOST_PROPERTY_TREE_THROW(ptree_bad_data( std::string("conversion of type \"") + typeid(Type).name() + "\" to data failed", boost::any())); } } template<class K, class D, class C> template<class Type> inline void basic_ptree<K, D, C>::put_value(const Type &value) { put_value(value, typename translator_between<data_type, Type>::type()); } template<class K, class D, class C> template<class Type, typename Translator> basic_ptree<K, D, C> & basic_ptree<K, D, C>::put( const path_type &path, const Type &value, Translator tr) { if(optional<self_type &> child = get_child_optional(path)) { child.get().put_value(value, tr); return *child; } else { self_type &child2 = put_child(path, self_type()); child2.put_value(value, tr); return child2; } } template<class K, class D, class C> template<class Type> inline basic_ptree<K, D, C> & basic_ptree<K, D, C>::put( const path_type &path, const Type &value) { return put(path, value, typename translator_between<data_type, Type>::type()); } template<class K, class D, class C> template<class Type, typename Translator> inline basic_ptree<K, D, C> & basic_ptree<K, D, C>::add( const path_type &path, const Type &value, Translator tr) { self_type &child = add_child(path, self_type()); child.put_value(value, tr); return child; } template<class K, class D, class C> template<class Type> inline basic_ptree<K, D, C> & basic_ptree<K, D, C>::add( const path_type &path, const Type &value) { return add(path, value, typename translator_between<data_type, Type>::type()); } template<class K, class D, class C> basic_ptree<K, D, C> * basic_ptree<K, D, C>::walk_path(path_type &p) const { if(p.empty()) { // I'm the child we're looking for. return const_cast<basic_ptree*>(this); } // Recurse down the tree to find the path. key_type fragment = p.reduce(); const_assoc_iterator el = find(fragment); if(el == not_found()) { // No such child. return 0; } // Not done yet, recurse. return el->second.walk_path(p); } template<class K, class D, class C> basic_ptree<K, D, C> & basic_ptree<K, D, C>::force_path(path_type &p) { BOOST_ASSERT(!p.empty() && "Empty path not allowed for put_child."); if(p.single()) { // I'm the parent we're looking for. return *this; } key_type fragment = p.reduce(); assoc_iterator el = find(fragment); // If we've found an existing child, go down that path. Else // create a new one. self_type& child = el == not_found() ? push_back(value_type(fragment, self_type()))->second : el->second; return child.force_path(p); } // Free functions template<class K, class D, class C> inline void swap(basic_ptree<K, D, C> &pt1, basic_ptree<K, D, C> &pt2) { pt1.swap(pt2); } } } #if defined(BOOST_PROPERTY_TREE_PAIR_BUG) #undef BOOST_PROPERTY_TREE_PAIR_BUG #endif #endif